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1 Introduction

This paper is the fifth in a series devoted to the numerical evaluation of multi-loop, multi-leg Feynman
diagrams. In [1] (hereafter I) the general strategy was outlined and in [2] (hereafter II) a complete list of
results was derived for two-loop functions with two external legs, including their infrared divergent on-shell
derivatives. Results for one-loop multi-leg diagrams were shown in [3] and additional material can be found
in [4]. Two-loop three-point functions for infrared convergent configurations were considered in [5] (hereafter
III), where numerical results can be found.

In this article we study the problem of deriving a judicious and efficient way to deal with tensor Feynman
integrals, namely those integrals that occur in any field theory with spin and non trivial structures for the
numerators of Feynman propagators. Admittedly the topic of this paper is rather technical, but it is needed
as a basis for any realistic calculation of physical observables at the two-loop level.

The complexity of handling two-loop tensor integrals is reflected in the following simple consideration: the
complete treatment of one-loop tensor integrals was confined to the appendices of [6], while the reduction of
general two-loop self-energies to standard scalar integrals already required a considerable fraction of [7]; the
inclusion of two-loop vertices requires the whole content of this paper. Past experience in the field has shown
the convenience of gathering a complete collection of results needed for a broad spectrum of applications in
one place. We devote the present article to this task.

While a considerable amount of literature is devoted to the evaluation of two-loop scalar vertices [8],
fewer papers deal with the tensor ones [9]; for earlier attempts to reduce and evaluate two-loop graphs with
arbitrary masses we refer the reader to the work of Ghinculov and Yao [10].

In recent years, the most popular and quite successful tool in dealing with multi-loop Feynman diagrams
in QED/QCD (or in selected problems in different models, characterized by a very small number of scales),
has been the Integration-By-Parts Identities (IBPI) method [11]. However, reduction to a set of Master
Integrals (MI) is poorly known in the enlarged scenario of multi-scale electroweak physics.

Our experience with one-loop multi-leg diagrams [3] shows that the optimal algorithm to deal with realistic
calculations should be able to treat both scalar and tensor integrals on the same footing. This algorithm
should not introduce multiplications of the tensor integrals by negative powers of Gram determinants, as
the latter’s zeros, although unphysical, may be dangerously close to the physically allowed region. The
numerical quality of tensor integrals also worsens if they are expressed in terms of linear combinations of
MI; the coefficients of these combinations have zeros corresponding to real singularities of the diagram [12],
and the singular behavior is usually badly overestimated leading to numerical instabilities.

From the point of view of numerical integration, it really makes little difference if tensor integrals are
expressed in terms of generalized scalar configurations, or in terms of smooth integral representations which
do not grant any privilege to a particular member of the same class of integrals. Of course, at the end of
the day we are always left with the problem of numerical cancellations (an issue related to the strategy of
trading one difficult integral for many simpler ones), and the optimal algorithm should minimize the number
of smooth integrals in the final answer. There is no evidence that employing our approach one encounters
more objectionable features than in reducing everything to MI; rather, in our opinion, the feasibility of the
latter has still to be proved in the complex environment of the full-fledged Standard Model (SM), even if
there are complete applications in QED [13] and in QCD [14].

We have not included four-point functions in the classification, although they are certainly needed to
compute physical observables for fermion–anti-fermion annihilations or scattering processes, not yet a top
priority in handling electroweak radiative corrections in the SM at the two-loop level. Note, however,
that there is intense activity in (QED) QCD scattering processes [14] and [15]. Addressing the full set of
corrections is, by necessity, a long term project which we undertake step-by-step (an attitude which should
not be confused with narrow focusing).

A large fraction of physical processes, in particular gauge bosons decays into fermion–anti-fermion pairs
and accurate predictions for gauge boson complex poles, only require two- and three-point functions. Also
for the analysis of the two-loop SM renormalization [16], two–point functions and vacuum bubbles are
essentially all we need. Indeed, in order to evaluate the Fermi coupling constant GF from the muon life-
time we always work at zero momentum transfer and neglect terms proportional to m2

µ/M2
W

; therefore,
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all diagrams contributing to this process (boxes included) are simply equivalent to vacuum bubbles, i.e.
generalized sunset integrals evaluated at zero external momentum.

Feynman diagrams are built using propagators and vertices. In momentum space, the former are repre-
sented by

N(p)

p2 + m2 − i δ
, (1)

where δ → 0+, m is the bare mass of the particle and N(p) is an expression depending on its spin. Our
general approach towards the numerical evaluation of an arbitrary, multi-scale, Feynman diagram G is to
use a Feynman parameter representation and to obtain, diagram-by-diagram, an integral representation of
the following form:

G =
∑

[

1

BG

∫

S

dxG(x)

]

, (2)

where x is a vector of Feynman parameters, S is a simplex, G is an integrable function (in the limit δ → 0+)
and BG is a function of masses and external momenta whose zeros correspond to true singularities of the
diagram G, if any. The Bernstein-Tkachov (hereafter BT) functional relations [17] are one realization of
Eq.(2), but in our previous work we considered different possibilities.

Smoothness requires that the kernel in Eq.(2), together with its first N derivatives, should be a continuous
function, with N as large as possible. However, in most cases we will be satisfied with absolute convergence,
e.g. with logarithmic singularities of the kernel. This is particularly true around the zeros of BG, where the
large number of terms, induced requiring continuous derivatives of higher orders, leads to large numerical
cancellations.

As we stressed earlier, this article is by its own nature rather technical, but we tried to avoid as much
as possible a layout which overwhelmingly privileges long lists of formulae in favor of interleaving the in-
dispensable amount of technical details with examples. For completeness, however, we inserted Appendices
where the reader can find a complete summary of the results occurring in the reduction procedure.

The results presented in this paper are intermediate steps in any physical calculation; although the
presentation is organized through a series of concatenated formulae that can be used recursively, further
derivations on the part of the reader are required in order to obtain analytic or numerical results for a
physical quantity.

The outline of the paper is as follows: in Section 2 we recall our notation and conventions. In Section 3
we review the problem of gauge cancellations and the use of Nielsen identities, while in Section 4 we illustrate
all preliminary steps that should be undertaken in any realistic calculation (like projector techniques). The
reduction of two-loop two-point functions is discussed in Section 5 and a complete list of the results is given in
Section 7. The role of integration-by-part identities is discussed in Section 6. In Sections 8–11 we present the
full body of our results for two-loop tensor integrals. (Rank three tensors for three-point functions are shown
in Section 9.7.) Conclusions are drawn in Section 12. Additional material is discussed in the Appendices; in
particular, the treatment of generalized one-loop functions is discussed in Appendix A. A concatenated set
of easy-to-use formulae for the reduction of two-loop three-point functions is summarized in Appendix B;
symmetries of diagrams are presented in Appendix C.

2 Conventions and notation

Our conventions for arbitrary two-loop diagrams were introduced in Sect. 2 of I. Specific conventions
for three-point functions were introduced in Sect. 2 of III; vertex topologies were classified in III and are
reproduced, for the reader’s convenience, in Figs. 6–11. Here we briefly recall the terminology.

A generalized one-loop diagram will be denoted by

Gµ1 , ··· , µL
({α}N ; {p}N−1 , {m}N) =

µ4−n

i π2

∫

dnq qµ1
· · · qµL

N
∏

i=1

[i]−αi
G

, (3)
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where n = 4− ǫ, n is the space-time dimension,1 µ is the arbitrary unit of mass, N is the number of vertices,
and

{α}N = α1 , · · · , αN , [i]G = (q +

i−1
∑

j=0

pj)
2 + m2

i , p0 = 0 . (4)

The one-loop two-, three-,... point functions will be denoted by G = B, C, · · ·.
A generalized two-loop diagram is defined with arbitrary, non-canonical, powers of its propagators; it can

be cast in the following form

G{α}a | {β}b | {γ}c(µ1 , · · · , µR | ν1 , · · · , νS ; {η1 p} , {η12 p} , {η2 p} , {m}a+b+c) =

µ2(4−n)

π4

∫

dnq1 dnq2

R
∏

r=1

q1µr

S
∏

s=1

q2νs

a
∏

i=1

(k2
i + m2

i )
−αi

a+c
∏

j=a+1

(k2
j + m2

j)
−γj

a+c+b
∏

l=a+c+1

(k2
l + m2

l )
−βl , (5)

where a, b and c indicate the number of lines in the q1, q2 and q1 − q2 loops, respectively. For generalized
functions we use α =

∑a
i=1 αi etc, while for standard functions (i.e. those where all the propagators have

canonical power −1), α = a, β = b and γ = c and we will write Gαβγ . Furthermore,

ki = q1 +
∑

N

j=1 η1
ij pj , i = 1, . . . , a ,

ki = q1 − q2 +
∑

N

j=1 η12
ij pj , i = a + 1, . . . , a + c ,

ki = q2 +
∑

N

j=1 η2
ij pj , i = a + c + 1, . . . , a + c + b ,

where ηs = ±1, or 0, and {p} is the set of external momenta. Diagrams which can be reduced to combinations
of other diagrams with a smaller number of internal lines will not receive a particular name. Otherwise, a
two-loop diagram will be denoted by Gαβγ , where G = S, V, B etc. stands for two-, three-, four-point etc.
For scalar integrals we will use the symbol Gαβγ

0 = Gαβγ(0|0; . . .). Following Eq.(5) diagrams are further
classified according to non empty entries in the matrices ηs and in the list of internal masses.

Integrals: To keep our results as compact as possible, we introduce the following notation (x0 = y0 = 1)
where C stands for (hyper)cube and S for simplex,

∫

dCS ({x} ; {y}) f(x1, · · · , xn1
, y1, · · · , yn2

) =

∫ 1

0

n1
∏

i=1

dxi

n2
∏

j=1

∫ yj−1

0

dyjf(x1, · · · , xn1
, y1, · · · , yn2

),

∫

dSn({x}) f(x1, · · · , xn) =

n
∏

i=1

∫ xi−1

0

dxi f(x1, · · · , xn),

∫

dCn({x})f(x1, · · · , xn) =

∫ 1

0

n
∏

i=1

dxif(x1, · · · , xn). (6)

Also, the so-called ′+′-distribution will be extensively used, e.g.

∫

dCn({z})

∫ 1

0

dx
f(x, {z})

x

∣

∣

∣

+
=

∫

dCn({z})

∫ 1

0

dx
f(x, {z}) − f(0, {z})

x
,

∫

dCn({z})

∫ 1

0

dx
f(x, {z})

x − 1

∣

∣

∣

+
=

∫

dCn({z})

∫ 1

0

dx
f(x, {z}) − f(1, {z})

x − 1
,

∫

dCn({z})

∫ 1

0

dx
f(x, {z}) lnn x

x

∣

∣

∣

+
=

∫

dCn({z})

∫ 1

0

dx

[

f(x, {z})− f(0, {z})
]

lnn x

x
. (7)

The last relation in Eq.(7) is used when evaluating integrals of the following type:

∫ 1

0

dx
f(x)

x1−ǫ
=

f(0)

ǫ
+

∫ 1

0

dx
f(x)

x

∣

∣

∣

+
− ǫ

∫ 1

0

dx
f(x) lnx

x

∣

∣

∣

+
+ O

(

ǫ2
)

.

1In our metric, space-like p implies p2 = ~p 2 + p2
4

> 0. Also, it is p4 = i p0 with p0 real for a physical four-momentum.
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Lists of arguments: To avoid long lists of arguments we introduce the symbol

{m}i j ···k = mi , mj , · · · , mk, exactly in this order. (8)

Miscellanea: We often need combinations of squared masses and momenta,

lijk = p2
i − m2

j + m2
k, lPjk = P 2 − m2

j + m2
k, lpjk = p2 − m2

j + m2
k,

m2
ijk = m2

i − m2
j + m2

k, m2
ij = m2

i − m2
j , pij = pi · pj ,

(G)ij = pij , D = detG = p2
1 p2

2 − (p1 · p2)
2, D1 = p2

1 p2
2, D2 = p12 p2

2, D3 = p12 p2
1, (9)

and of Feynman parameters,

x = 1 − x, xi = 1 − xi, yi = 1 − yi, etc, X =
1 − x1

1 − x2
= 1 − X (10)

Yi = −(1 − yi + y3 X) , Y 2 = 1 − y2 X, Hi = 1 − x1 − x2 Yi , i = 1, 2 . (11)

F (x, y) = p2
1 x2 + 2 p12 x y + p2

2 y2, m2
x =

m2
1

x
+

m2
2

1 − x
. (12)

Symmetrized tensors: We define (partially) symmetrized tensors as follows (δαβ is the Kronecker delta
function),

{p k}µν = pµ kν + pν kµ, {δ p}αβγ = δαβpγ + δαγpβ + δβγpα,

{ppk}αβγ = pα pβ kγ + pα pγ kβ + pγ pβ kα

{ppk}αγ | β = pαpβkγ + pγpβkα, {δ p}αβ | γ = δαγ pβ + δβγ pα. (13)

Contraction: If p is a vector and f is a function, we introduce the symbol

f(· · · , p , · · ·) = pµ f(· · · , µ , · · ·), f(· · · µµ , · · ·) = δµν f(· · · µν , · · ·). (14)

MS factors: Finally we remind the reader of the definition of MS factors,

∆UV = γ + lnπ − ln
µ2

| P 2 |
, ∆UV =

1

ǫ
− ∆UV , ω =

µ2

π
, (15)

where γ = 0.577216 · · · is the Euler constant. In one-loop calculations the definition ∆UV = 2/ǫ−∆UV

is often employed. Finally some authors prefer to define n = 4 − 2 ǫ.

2.1 Definition of one-loop generalized functions

Products of one-loop functions occur in the reduction of two-loop diagrams; generalized one-loop functions
are defined in Eq.(3), specific examples of one- and two-point (scalar) functions are

A0(α; m) =
µǫ

i π2

∫

dnq

(q2 + m2)α
, A0(α; [mi, mj ]) = A0(α; mi) − A0(α; mj),

B0(α, β ; p, m1, m2) =
µǫ

i π2

∫

dnq

(q2 + m2
1)

α((q + p)2 + m2
2)

β
. (16)

Note that we always drop strings like 1, 1, · · · in the argument of standard functions, namely, we write A0(m)
for A0(1, m) etc. Tensor integrals are:

µǫ

i π2

∫

dnq qµ

(q2 + m2
1)

α ((q + p)2 + m2
2)

β
= B1(α, β ; p, {m}12) pµ, (17)
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µǫ

i π2

∫

dnq qµqν

(q2 + m2
1)

α ((q + p)2 + m2
2)

β
= B21(α, β ; p, {m}12) pµ pν + B22(α, β ; p, {m}12) δµν , (18)

their reduction is given in Section 7. Generalized one-loop three-point functions are introduced as follows:

Cµ1,···µl
({α}3 ; p1, p2, {m}123) =

µǫ

i π2

∫

dnq

l
∏

j=1

qµj

3
∏

i=1

[i]−αi , (19)

with [i] = Q2
i + m2

i and Qi = q + p0 + · · · + pi−1, p0 = 0. In particular,

Cµ(p1, p2, {m}123) =
µǫ

i π2

∫

dnq
qµ

[q2 + m2
1][(q + p1)2 + m2

2][(q + p1 + p2)2 + m2
3]

. (20)

The integrals of Eq.(19) can be reduced, for example,

Cµ({α}3 ; p1, p2, {m}123) = C11({α}3 ; · · ·) p1µ + C12({α}3 ; · · ·) p2µ, (21)

Cµν({α}3 ; p1, p2, {m}123) = C21({α}3 ; · · ·) p1µp1ν + C22({α}3 ; · · ·) p2µp2ν

+ C23({α}3 ; · · ·) {p1p2}µν + C24({α}3 ; · · ·) δµν , (22)

where the symmetrized product is defined by Eq.(13); for the reduction we refer to Appendix A.
For completeness we also define generalized one-loop four-point functions, although they are not needed

in this article :

Dµ1,···,µl
({α}4 ; p1, p2, p3, {m}1234) =

µǫ

i π2

∫

dnq

l
∏

j=1

qµj

4
∏

i=1

[i]−αi , (23)

etc. Once again [i] = Q2
1 + m2

i , Qi = q + p0 + · · · + pi−1 with p0 = 0.

2.2 Alphameric classification of graphs

In our conventions any scalar two-loop diagram is identified by a capital letter (S, V , etc.) indicating
the number of external legs, and by a triplet of numbers (α, β and γ) giving the number of internal lines
(carrying internal momenta q1, q2 and q1 − q2, respectively). There is a compact way of representing this
triplet: assume that γ 6= 0, i.e. that we are dealing with non-factorizable diagrams, then we introduce

κ = γmax

[

αmax (β − 1) + α − 1
]

+ γ (24)

for each diagram. For G = V we have αmax = 2 and γmax = 2. Furthermore, we can associate a letter of the
English alphabet to each value of κ. Therefore, the following correspondence holds:

121 → E, 131 → I, 141 → M, 221 → G, 231 → K, 222 → H. (25)

For G = S we have αmax = 2 and γmax = 1, therefore

111 → A, 121 → C, 131 → E, 221 → D. (26)

This classification is extensively used throughout the paper and motivated by the unavoidable proliferation
of indices; the reader not familiar with it should remember that storing the elements of a matrix into a vector
is a well-known coding procedure (e.g. in Fortran). Note that in II and in III this convention was not yet
used and the correspondence of results is simply provided by Eqs.(25)–(26).
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3 Tensor integrals and gauge cancellations

Any Feynman integral with a tensor structure can be written as a combination of form factors

Gµ1 ···µN
=

imax
∑

i=1

Gi
S

Fi ; µ1 ···µN
, (27)

where the Fi ; µ1 ···µN
are tensor structures made up of external momenta, Kronecker delta functions, ǫ-tensors

(which will cancel in any CP-even observable) and elements of the Dirac algebra; the scalar projections Gi
S

ad-
mit a parametric representation which is equivalent to the one for the corresponding scalar diagram but with
polynomials of Feynman parameters occurring in the numerator. Once we have an integral representation
for the primary scalar diagram, with the desired properties of smoothness, then, analogous representations,
with the same properties, also follow for the induced scalar projections. Therefore, from the point of view
of numerical evaluation there is really little difference between scalar and tensor integrals.

However, there is a problem due to the fact that we are dealing with gauge theories with inherent gauge
cancellations which do not support a blind application of the procedure just described. A very simple
example will be useful to illustrate the roots of this problem. Consider the one-loop photon self-energy in
QED and express the result in terms of scalar one-loop form factors [6]; we obtain

Πf
µν = Πf

1δµν + Πf
2pµpν , (28)

Πf
1 = −4 e2

{

(2 − n)B22 − p2
[

B21 + B1

]

− m2
f B0

}

, Πf
2 = −8 e2

[

B21 + B1

]

, (29)

where e is the bare electric charge and B0 etc. are the standard one-loop functions of [6], all with arguments
(p2; mf , mf ). The gauge invariance of the theory is controlled by a set of Ward–Slavnov–Taylor identities [18]
(hereafter WST), one of which requires Πf

µν to be transverse; this hardly follows from expressing the form
factors in parametric space followed by some numerical integration. Rather, it follows from a set of identities
that one can write among the standard one-loop functions (B22 etc.) directly in momentum space, the so-
called reduction procedure (“scalarization” in jargon). This procedure, in its original design, is plagued by
the occurrence of inverse powers of Gram determinants whose zeros are unphysical but sometimes dangerous
for the numerical stability of the result.

There is another example where gauge cancellations play a crucial role. Suppose that we decide to work
in the so-called Rξ gauges with one or more gauge parameters which we will collectively indicate by ξ:
the expected ξ independence is seen at the level of S-matrix elements and not for individual contributions
to Green functions. From this point of view, any procedure that computes single diagrams and sums the
corresponding numerical results, without controlling gauge cancellations analytically, is bound to have its
own troubles.

These two rather elementary considerations suggest the following strategy: first impose all the require-
ments dictated by WST identities and see that they are satisfied. At this point organize the calculation
according to building blocks that are, by construction, gauge-parameter independent.

The first step requires some form of scalarization (which, as we saw, may be numerically unstable), but
the perspective is different: scalarization is now needed only to prove that certain combinations of form
factors are zero, and any occurrence of Gram determinants does not therefore pose a problem.

In the second step we need to control the ξ behavior of individual Green functions; a possible tool is
represented by the use of the Nielsen identities (hereafter NI) [19]. Typically we will consider the transverse
propagator of a gauge field:

Dµν =
1

(2π)4 i

δµν − pµpν/s

s − M2
0 + Π(ξ, s)

, (30)

where p2 = −s, M0 is the bare mass of the particle and Π(ξ, s) is the self-energy. The corresponding NI
reads as follows:

∂

∂ ξ
Π(ξ, s) = Λ(ξ, s)Π(ξ, s), (31)
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where Λ is a complex, amputated, 1PI, two-point Green function and the complex pole is defined by

s̄ − M2
0 + Π(ξ, s̄) = 0, ∂ξ s̄ = 0. (32)

Let us consider now the amplitude for i → V → f , where V is an unstable gauge boson and i/f are
initial/final states. The overall amplitude becomes

Afi(s) =
δµν

s − s̄

V µ
f (s̄)V ν

i (s̄)

1 + Π′(s̄)
+ non-resonant terms, (33)

where it is understood that the vertex functions V µ
f and V ν

i include the wave-function renormalization factors
of the external, on-shell, particles. It has been proved that

d

d ξ

[

1 + Π′(s̄)
]−1/2

V µ
f (s̄) = 0; (34)

this combination is the prototype of one of the gauge-parameter independent building blocks that are needed
to assemble our calculation of a physical observables. All gauge-parameter independent blocks will then be
mapped into one (multi-dimensional) integral to be evaluated numerically.

4 Projector techniques

Any realistic calculation requires several steps to be performed before we can actually start to compute
diagrams or sums of diagrams; in all of them, some action can be taken in order to simplify the structure of
the amplitude in some efficient way. Much work has been invested in this area and we refer to recent work
of Glover [20] for an exhaustive list of references.

Here we focus on few examples. Consider, for instance, the matrix element for the decay of a vector
particle V into a fermion-antifermion pair, V (P+) → f̄(p+)f(p−) (all particles are on their mass-shell);
instead of decomposing all tensor integrals into form factors, we first decompose the vertex Vµ into the
following structures,

M = ū(p−) ǫ · V v(p+) = ū(p−)
[

FV /ǫ + FA /ǫ γ5 + FS P− · ǫ + FP P− · ǫ γ5

]

v(p+), (35)

where ǫµ = ǫµ(P+) is the polarization vector for the V particle, subject to the constraint ǫ · P+ = 0
(P± = p+ ± p−). We also introduce projectors to extract the form factors appearing in Eq.(35) [20]

∑

spin

PI M = FI , (36)

where I = V, A, S or P . The explicit solution for the projectors is obtained considering four auxiliary
quantities

P1 = v̄(p+) /ǫ u(p−), P2 = v̄(p+) /ǫ γ5 u(p−),
P3 = ǫ · P− v̄(p+)u(p−), P4 = ǫ · P− v̄(p+) γ5 u(p−).

Let us define βM = M2− 4 m2, where M is the mass of the vector boson V and m is the mass of the fermion
f : we get

PV = −
1

2 (2 − n)M2

[

P1 + 2 i
m

βM

P3

]

, PA = −
1

2 (2 − n)βM

P2,

PP =
1

2 M2 βM

P4, PS = − i
m

M2 (2 − n)βM

{

P1 +
i

2 m βM

[

4 m2 + (n − 2)M2
]

P3

}

, (37)

thus providing the scalar coefficients FI . For example,

FV =
1

n − 2
TrFV , FV = −

1

2 M2
γµ Λ− Vµ Λ+ −

i

2 M4
Λ+ Λ− P+ · V Λ+

−
i m

M4
Λ− P+ · V Λ+ −

i m

M2 βM

Λ− P− · V Λ+, (38)
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where Λ+ = −i /p+ − m and Λ− = −i /p− + m. This procedure completely saturates indices and allows
us to consider only integrals with positive powers of scalar products in the numerators. Then a reduction
procedure follows and we will show that the final answer contains only generalized scalar integrals. For
a discussion on projector techniques in conventional dimensional regularization or in the ’t Hooft-Veltman
scheme [21] we refer again to [20].

Another example we want to consider is the amplitude for s → γγ, where s is a generic scalar particle;
for this case we follow the procedure of Binoth, Guillet and Heinrich [22] and introduce the vectors

riµ =

i
∑

j=1

pjµ, Riµ =

2
∑

j=1

G−1
ij rjµ, Gij = 2 ri · rj . (39)

The square of the s → γγ vertex is further decomposed into

Vµν = FD δµν +

2
∑

i,j=1

FP ,ij riµ rjν . (40)

The form factors of this decomposition are expressed through the action of projectors,

FD = Pµν
D

Vµν , FP ,ij = Pµν
P ,ij Vµν , (41)

Pµν
D

=
1

n − 2

[

δµν − 2 rµ G−1 rν
]

, Pµν
P ,ij = 4

[

Rµ
i Rν

j −
1

2
G−1

ij Pµν
D

]

. (42)

These projectors have the following properties:

Ri · rj =
1

2
δij , Pµν

D
riν = 0, Pµν

D
PD,µν =

1

n − 2
. (43)

The whole procedure is better illustrated in terms of an example, an I-family contribution to the decay
H → γγ, see Fig. 1. The corresponding integral is

V I

−P

p2

p1

H

Figure 1: I-family contribution to the decay H → γγ. Internal dotted lines represent a Higgs-Kibble φ-field, while
solid ones indicate a W -field.

V µν = g5 s4
θ

M
W

2
µ2ǫ

∫

dnq1 dnq2

{[

(q2 + q1) · (p2 − p1) − q2
2 − q1 · q2

]

δµν

+ 2
[

qµ
1 qν

2 + (q1 + q2)
µ pν

1 − (q1 + q2)
ν pµ

2

]

+ qµ
2 (q2 − q1)

ν + (q1 + q2)
µ pν

2 − (q1 + q2)
ν pµ

1

}

×
[

(q2
1 + M2

W
) (q1 − q2)

2 (q2
2 + M2

W
) ((q2 + p1)

2 + M2
W

) ((q2 + P )2 + M2
W

)
]−1

, (44)
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where sθ (cθ) is the sine (cosine) of the weak-mixing angle. Terms containing q2
2 , q1 · q2 and q2 · p1 are

immediately eliminated from the final answer. Consider now terms with qµ
2 (for those with qµ

1 there is an
analogous argument); with straightforward substitutions we obtain

∫

F qµ
2 → F1 pµ

1 + F2 pµ
2 → F1 rµ

1 + F2 rµ
2 , (45)

where with F , etc we indicate some combination of form factors of the V I family whose explicit expression
is not relevant for our discussion at this stage. When we project with Pµν

D or with Riν it follows that
∫

F Pµν
D

q2µ →
∑

i

Fi Pµν
D

riµ = 0,

∫

F Rµ
i q2µ →

∑

j

Fj Ri · rj → Fi. (46)

When we have a term with qµ
2 qν

2 and project with Pµν
D it follows

∫

F Pµν
D

qµ
2 qν

2 →
[

∑

ij

Fij rµ
i rν

j + Fd δµν
]

PD,µν → Fd PD,µµ = Fd. (47)

The number of form factors may be further reduced by requiring that on-(off-)shell WST identities hold.
The procedure that we just illustrated can be easily generalized to other situations; consider, for instance,

the off-shell vertex corresponding to V1 → V2 +V3 where the Vi are gauge bosons. By off-shell we mean that
the sources Jµ

V emitting/absorbing the vector bosons are not physical (therefore ∂µ Jµ
V = 0 is not assumed)

and are not on their mass-shell; this choice is also needed when two of the particles correspond to (idealized)
stable, physical, vector bosons and we want to check a WST identity. In full generality we write the following
decomposition of the vertex:

V µαβ =

2
∑

i=1

[

Ai δµα rβ
i + Bi δµβ rα

i + Ci δαβ rµ
i

]

+

2
∑

ijk=1

Dijk rµ
i rα

j rβ
k . (48)

Using the relations

Ri · rj =
1

2
δij , Ri · Rj =

1

2
G−1

ij , Gµν = Rµ GRν = rµ G−1 rν , (49)

we introduce the following projectors:

Pµαβ
Al = δµα Rβ

l − 2Gµα Rβ
l , Pµαβ

Bl = δµβ Rα
l − 2Gµβ Rα

l , Pµαβ
Cl = δαβ Rµ

l − 2Gαβ Rµ
l ,

Pµαβ
Dijl = Rµ

i Rα
j Rβ

l −
1

2(n − 2)

[

G−1
ij Pµαβ

Al + G−1
il Pµαβ

Bj + G−1
jl Pµαβ

Ci

]

. (50)

Their action can be represented as

Ai =
2

n − 2
Pµαβ

Ai Vµαβ , Bi =
2

n − 2
Pµαβ

Bi Vµαβ , Ci =
2

n − 2
Pµαβ

Ci Vµαβ , Dijl = 8Pµαβ
Dijl Vµαβ . (51)

At the level of triple vector boson couplings we encounter an additional complication, namely CP-odd form
factors are absent only in the total amplitude but not in single diagrams. Therefore, one should write a more
general form for the vertex, including CP-odd terms:

V µαβ
ǫ =

2
∑

i=1

[

Ei ǫ(λ, σ, µ, α) rβ
i + Fi ǫ(λ, σ, µ, β) rα

i + Gi ǫ(λ, σ, α, β) rµ
i

]

r1λ r2σ. (52)

The following property holds: Pµαβ
Ii Vǫ,µαβ = 0, for I = A, B, C and Pµαβ

Dijk Vǫ,µαβ = 0.
For external Proca fields (and also for Rarita-Schwinger fields), however, our preference will be for

other methods [23] where the wave-functions for vector particles can be entirely expressed in terms of Dirac
spinors with arbitrary polarization vectors allowing for the implementation of projector techniques for helicity
amplitudes [20].
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5 Techniques for the reduction of two-loop two-point functions

It is well-known that the reduction of two-loop tensor integrals can be achieved up to two-point functions
if we are ready to enlarge the class of scalar functions. The original derivation is due to Weiglein, Scharf and
Bohm [7]; for completeness we review here the necessary technology and refer the reader to Appendix B for
the full list of results.

Standard reduction to scalar integrals amounts to writing down the most general decomposition of tensor
integrals, and to transform this relation into a system of linear equations whose unknowns are the form factors
and the known terms follow from algebraic reduction between saturated numerators and denominators.

The well-known obstacle on the road to scalarization of multi-loop diagrams is represented by the oc-
currence of irreducible numerators, i.e. those cases where a qi · p term appears in the numerator, but no
parameterization of the diagram can be found where the inverse propagators q2

i + m2
j and (qi + p)2 + m2

l

simultaneously occur. For any two-loop self-energy diagram with I propagators there are 5 − I irreducible
scalar products. To illustrate the procedure we start considering some simple example, e.g. a vector integral

p m2

m1

m3

Figure 2: Scalar diagram of the SA-family, the so-called sunset (or sunrise) configuration.

of the SA-family, depicted in Fig. 2,

SA(µ | 0 ; p, {m}123) =
µ2ǫ

π4

∫

dnq1 dnq2
q1µ

[1] [2]A [3]A
, (53)

where we introduced a shorthand notation for the inverse propagators:

[1] = q2
1 + m2

1, [2]A = (q1 − q2 + p)2 + m2
2, [3]A = q2

2 + m2
3. (54)

Apparently we meet an irreducible numerator, but we can generalize the procedure considering an intermedi-
ate reduction with respect to sub-loops, a technique originally introduced in [7]. In the following subsection
we briefly illustrate this technique.

5.1 Reduction to sub-loops

Consider Eq.(53): we may write
∫

dnq1
q1µ

[1][2]A
= XA (q2 − p)µ. (55)

If we multiply both sides of Eq.(55) by (q2 − p)µ and use the identities

q1 · p

[2]A
=

q1 · q2

[2]A
+

1

2

[

1 −
q2
1 + q2

2 − 2 q2 · p + m2
2 + p2

[2]A

]

,
q2
1

[1]
= 1 −

m2
1

[1]
, (56)

we can solve for XA obtaining

XA = −
1

2

1

[0]A

∫

dnq1

[m2
12 − [0]A
[1][2]A

+
1

[1]
−

1

[2]A

]

, (57)

where a new propagator has made its appearance, [0]A = (q2 − p)2. We then use a second pair of identities,

q2 · p

[0]A
= −

1

2

[

1 −
q2
2 + p2

[0]A

]

,
q2
2

[3]A
= 1 −

m2
3

[3]A
, (58)
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to obtain the following result:

SA(µ | 0 ; p, {m}123) =
1

2
SA(0 |µ ; p, {m}123) +

1

4
SA

a pµ, (59)

SA

a = m2
12 (

m2
3

p2
+ 1)SC

0
(p, {m}12, 0, m3) + (

m2
12

p2
− 2)SA

0
(p, {m}123)

−
m2

12

p2
SA

0
(0, 0, {m}12) − A0([m1, m2])

[

(1 +
m2

3

p2
)B0(p, m3, 0) +

1

p2
A0(m3)

]

. (60)

In Eq.(60) we used generalized one-loop scalar functions defined in Eq.(16) and

SC

0
(p, {m}1234) =

µ2ǫ

π4

∫

dnq1 dnq2
1

[1] [2]C [3]C [4]C
, (61)

where the propagators are [2]C = (q1 − q2)
2 + m2

2, [3]C = q2
2 + m2

3 and [4]C = (q2 + p)2 + m2
4. Henceforth we

continue our derivation for SA(0 |µ ; p, {m}123) and write another equation,

∫

dnq2
q2µ

[2]A[3]A
= YA (q1 + p)µ; (62)

a solution for YA is obtained,

YA = −
1

2

1

[0]AA

∫

dnq2

[m2
32 − [0]AA

[2]A[3]A
−

1

[2]A
+

1

[3]A

]

, (63)

with a new propagator defined by [0]AA = (q1 + p)2. It follows that

SA(0 |µ ; p, {m}123) =
1

2
SA(µ | 0 ; p, {m}123) +

1

4
SA

b pµ, (64)

SA

b = −m2
32 (

m2
1

p2
+ 1)SC

0
(p, {m}32, 0, m1) − (

m2
32

p2
− 2)SA

0
(p, {m}123)

+
m2

32

p2
SA

0
(0, 0, {m}32) + A0([m3, m2])

[

(1 +
m2

1

p2
)B0(p, m1, 0) +

1

p2
A0(m1)

]

. (65)

Therefore, using the system of Eqs.(60)–(65) we can solve for both vector integrals in terms of scalar functions.
The full list of results will be given in Section 7. Already from this simple example we see the appearance

of generalized scalar loop integrals in the reduction of tensor ones. In the next Section we present the strategy
for their evaluation and discuss the general case based on a special set of identities.

6 Integration by parts identities and generalized recurrence relations

A popular and quite successful tool in dealing with multi-loop diagrams, in particular those contain-
ing powers of irreducible scalar products, is represented by the integration-by-parts identities (hereafter
IBPI) [11]. It is well-known that arbitrary integrals can be reduced [24] to an handful of Master Integrals
(MI) using IBPI [11] and Lorentz-invariance identities [26].

For one-loop diagrams IBPI can be written as

∫

dnq
∂

∂qµ

[

vµ F (q, p, m1 · · ·)
]

= 0, (66)
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where v = q, p1 · · · , pE, and E is the number of independent external momenta. By careful examination of
the IBPI one can show that all one-loop diagrams can be reduced to a limited set of MI. Here we would like
to point out one drawback of this solution. Consider, for instance, the following identity [25],

B0(1, 2 ; p, m1, m2) =
1

λ(−p2, m2
1, m

2
2)

{

(n − 3) (m2
1 − m2

2 − p2)B0(p, m1, m2)

+ (n − 2)
[

A0(m1) −
p2 + m2

1 + m2
2

2 m2
2

A0(m2)
]}

, (67)

where λ(x, y, z) is the familiar Källen lambda function λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz. The
factor in front of the curly bracket is exactly the BT-factor associated with the diagram; from the general
analysis of [3] we know that at the normal threshold the leading behavior of B0(1, 2) is λ−1/2, so that the
reduction to MI apparently overestimates the singular behavior; of course, by carefully examining the curly
bracket in Eq.(67) one can derive the right expansion at threshold, but the result, as it stands, is again a
source of cancellations/instabilities. Our experience, e.g. with one-loop multi-leg diagrams [3], shows that
numerical evaluation following smoothness algorithms (e.g. Bernstein-Tkachov functional relations [17]) does
not increase the degree of divergence when going from scalar to tensor integrals.

The IBPI for two-loop diagrams can be written as
∫

dnq1 dnq2
∂

∂aµ

[

bµ F (q1, q2, {p}, m1 · · ·)
]

= 0, a = qi, b = qi, p1 · · · , pE, (68)

where i = 1, 2, and E is the number of independent external momenta. Again, using IBPI, arbitrary two-
loop integrals can be written in terms of a restricted number of MI. The problem remains in the explicit
evaluation of the MI; in the following of this Section we want to show that the solution is purely algebraic
and, at the same time, we will discuss the relationship with our approach. Consider again the scalar and the
two vector integrals in the SA-family: for them we have

SA(0 | 0 ; p, {m}123) = SA

0
, SA(µ | 0 ; p, {m}123) = SA

1
pµ, SA(0 |µ ; p, {m}123) = SA

2
pµ. (69)

Introducing the notation
∫

DSA =

∫ 1

0

dx

∫ 1

0

dy
[

x (1 − x)
]−ǫ/2

yǫ/2−1, (70)

we derive the parametric representation for the scalar and the two vector integrals:

SA

i = ωǫ Γ (ǫ − 1)

∫

DSA P A

i (x, y)χ1−ǫ
A

(x, y), (71)

where Γ (z) denotes the Euler gamma function, ω is defined in Eq.(15) and where we introduced the auxiliary
polynomials

P A

0 = −1, P A

1 = x (1 − y), P A

2 = − y. (72)

The quadratic form χ
A

in Eq.(71) is given by χ
A

= −p2 y2 + (p2 − m2
3 + m2

x) y + m2
3, with m2

x defined in
Eq.(12).

The evaluation of the scalar integral was discussed in [1] and can be easily extended to cover the two
remaining cases. This simple example can be fully generalized, thus proving that any smoothness algorithm
designed for scalar integrals will also be effective to deal with tensor ones; physical observables can be
evaluated without using a reduction procedure. Needless to say, however, that when cancellations are at the
basis of the result – for instance when testing the WST identities of the theory – scalarization should be
attempted; indeed, in these cases the goodness of the result depends crucially on our capability to express
the whole set of graphs in terms of a minimal set of integrals.

One way of deriving this result is purely algebraic: to achieve scalarization, which is equivalent to express
irreducible tensor integrals in terms of truly scalar functions, we write down generalized functions

S
α1|α3|α2

A (n ; p, {m}123) =
µ2(4−n)

π4

∫

dnq1 dnq2

3
∏

i=1

[i]−αi
A

, (73)
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with [1]A = [1], which are defined for arbitrary space-time dimension n. Subsequently we fix n to be
n =

∑

i αi + 1 − ǫ and obtain

S
α1|α3|α2

A (n ; p, {m}123) = −
Γ (ǫ − 1)
∏

i Γ (αi)
ω3−

∑

α+ǫ

∫

dC2 x−ρ1/2 (1 − x)−ρ2/2 (1 − y)ρ3 yρ4/2 χ1−ǫ
A

, (74)

where ω is defined in Eq.(15) and where we introduced powers

ρ1 = 1 + α1 − α2 − α3 + ǫ, ρ2 = 1 + α2 − α1 − α3 + ǫ, ρ3 = α3 − 1, ρ4 = α1 + α2 − α3 − 3 + ǫ. (75)

According to the work of Tarasov [27] the content of Eq.(74) can be interpreted by saying that we have a
scalar integral in shifted space-time dimension and with non-canonical powers of propagators; equivalently,
we may interpret it as an integral in the canonical 4− ǫ dimensions, with all powers in the propagators equal
to one but with polynomials of Feynman parameters in the numerator. To formally show this equivalence
we write

SA

i =

2
∑

j=1

ωnj−4+ǫ kij S
αj | βj | γj

A (nj ; p, {m}123), i = 1, 2, (76)

with nj = αj + βj + γj + 1 − ǫ, and fix all coefficients and exponents in order to match Eq.(72). A solution
is therefore given by α1 = 1, β1 = 2, γ1 = 2, or by α2 = 2, β2 = 1, γ2 = 2, with coefficients k11 = −1, k12 = 0
and k21 = 0, k22 = 1.

Note that, starting with two-loop vertices and due to the presence of irreducible scalar products, we
should abandon the term “scalarization” in favor of a more general concept, namely the reduction to a
minimum number of functions that are needed to classify the problem at hand. One can hence adopt a
reduction to scalar integrals in shifted dimensions, followed by a solution of generalized recursion relations [27]
(which include the IBPI method as a particular case) reducing the large set of integrals to relatively few
MI. Alternatively, we can decide to relate the form factors to truly scalar integrals in the same number of
dimensions and belonging to contiguous families, and to integrals with contracted and irreducible numerators
for which a numerical solution is available; the quality of this latter numerical solution is as good as the one
for the scalar configurations.

The two procedures are algebraically equivalent and preference is, to some extent, a matter of taste,
although the power of a procedure can only be justified a posteriori by the goodness of the corresponding
result. As a matter of fact, a reduction to master integrals is notoriously difficult to achieve when the problem
is characterized by several scales. For completeness we stress that Davydychev [28] and, later on, Bern, Dixon
and Kosower [29] gave expressions for one-loop tensor integrals with shifted dimensions; Campbell, Glover
and Miller [30] discovered good numerical stability for one-loop integrals in higher dimensions; and a simple
formula expressing any N -point integral in terms of integrals in higher dimensions was given by Fleischer,
Jegerlehner and Tarasov [31].

An example of reduction of generalized functions with the help of IBP techniques is provided by the well-
known result that all generalized scalar sunset diagrams with zero external momentum (i.e. vacuum-bubbles)
can be fully reduced. To see this we first introduce

SA

0
({α}3 ; 0, {m}123) =

µ2ǫ

π4

∫

dnq1 dnq2

3
∏

i=1

[i(p = 0)]−αi
A

, (77)

where [i]A is defined in Eq.(54) but with p = 0 and [1]A = [1]. IBPI reduce all functions in this class to
combinations of SA

0
(1, 1, 2 ; 0, {m}123) and products of one-loop integrals. For instance we obtain

SA

0
({α}3 ; 0, {m}123) =

1

m2
132

SA

0
({α}3 ; 0, {m}123), (78)

etc, with

SA

0
(0, {m}123) =

λ(m2
1, m

2
2, m

2
3)

n − 3
SA

0
(1, 1, 2 ; 0, {m}123) +

n − 2

n − 3

[

A0(m1)A0(m2)

14



−
1

2

(

1 −
m2

1

m2
3

+
m2

2

m2
3

)

A0(m1)A0(m3) −
1

2

(

1 +
m2

1

m2
3

−
m2

2

m2
3

)

A0(m2)A0(m3)
]

,

SA

0
(2, 1, 1 ; 0, {m}123) = m2

213 SA

0
(1, 1, 2 ; 0, {m}123) +

n − 2

2

[ 1

m2
3

A0(m2)A0(m3)

−
1

m2
1

A0(m1)A0(m2) +
( 1

m2
1

−
1

m2
3

)

A0(m1)A0(m3)
]

,

SA

0
(1, 2, 1 ; 0, {m}123) = m2

123 SA

0
(1, 1, 2 ; 0, {m}123) +

n − 2

2

[( 1

m2
2

−
1

m2
3

)

A0(m2)A0(m3)

−
1

m2
2

A0(m1)A0(m2) +
1

m2
3

A0(m1)A0(m3)
]

, (79)

etc. The number of terms in the reduction tends to increase considerably for higher powers in the propagators
of the generalized sunset functions but, as we said, all of them can be expressed through the (1, 1, 2) sunset
integral and products of one-loop A0-functions.

7 Reduction for tensor two-point functions

In this Section we give a full list of results following the method of Weiglein, Scharf and Bohm [7] as
derived in Section 5. Scalar two-loop two-point functions are defined by

SA

0
(p, {m}123) =

µ2ǫ

π4

∫

dnq1 dnq2
1

[1] [2]A [3]A
,

SC

0
(p, {m}1234) =

µ2ǫ

π4

∫

dnq1 dnq2
1

[1] [2]C [3]C [4]C
,

SD

0
(p, {m}12345) =

µ2ǫ

π4

∫

dnq1 dnq2
1

[1] [2]D [3]D [4]D [5]D
,

SE

0
(p, {m}12345) =

µ2ǫ

π4

∫

dnq1 dnq2
1

[1] [2]E [3]E [4]E [5]E
, (80)

with propagators
[1] = q2

1 + m2
1, [2]A = (q1 − q2 + p)2 + m2

2, [3]A = q2
2 + m2

3, (81)

[2]C = (q1 − q2)
2 + m2

2, [3]C = q2
2 + m2

3, [4]C = (q2 + p)2 + m2
4, (82)

[2]D = (q1 + p)2 + m2
2, [3]D = (q1 − q2)

2 + m2
3, [4]D = q2

2 + m2
4, [5]D = (q2 + p)2 + m2

5. (83)

[2]E = (q1 − q2)
2 + m2

2, [3]E = q2
2 + m2

3, [4]E = (q2 + p)2 + m2
4, [5]E = q2

2 + m2
5, (84)

Propagators [i]E should not be confused with those appearing in Eq.(117) which refer to a three-point
function. These scalar diagrams were investigated in [1], Eq. (89) and Eqs. (146-147) for SA

0
≡ S111

0
; in [2],

Sect. (5.8) for SC

0
≡ S121

0
, Sect. (7.3) for SD

0
≡ S221

0
and Sect. (7.8) for SE

0
≡ S131

0
. Furthermore, we define

form factors according to

SI(µ | 0) = SI

1
pµ, SI(0 |µ) = SI

2
pµ, SI(µ, ν | 0) = SI

112
δµν + SI

111
pµ pν ,

SI(µ | ν) = SI

122
δµν + SI

121
pµ pν , SI(0 |µ, ν) = SI

222
δµν + SI

221
pµ pν , (85)

with I = A, C, D, E; the irreducible classes for two-loop two-point functions are shown in Fig. 3. Generalized
one-loop functions are given in Eqs.(16)–(18): after reduction,(with λij = λ(−p2, m2

i , m
2
j)) we obtain

A0(α, m) =
µǫ

i π2

∫

dnq

(q2 + m2)α
=

1

m2

[

1 −
4 − ǫ

2 (α − 1)

]

A0(α − 1, m), Re α > 1, (86)
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Figure 3: Irreducible classes for two-loop two-point functions.

B1(2, 1 ; p, {m}12) =
1

2 p2

[

A0(2, m1) − B0(p, {m}12) − lp12 B0(2, 1, p, {m}12)
]

,

B21(2, 1 ; p, {m}12) = −
1

4

1

(n − 1)p4

[

n lp12 A0(2, m1) + n A0([m1, m2]) + 2 (2 p2 − n lp12)B0(p, m1, m2)

+ (4 p2 m2
1 (n − 1) − n λ12)B0(2, 1 ; p, m1, m2)

]

,

B22(2, 1 ; p, {m}12) = −
1

4

1

(n − 1)p2

[

A0([m1, m2]) + lp12 A0(2, m1) + 2 lp21 B0(p, {m}12)

+ λ12 B0(2, 1 ; p, {m}12)
]

,

B1(1, 2; p, {m}12) = B1(2, 1 ; −p, {m}21) − B0(2, 1 ; −p, {m}21), etc. (87)

In this Section it is always understood that the space-time dimension is n = 4− ǫ. Whenever reducibility is
at hand we apply standard methods and obtain the following list of results:

SC

111
= −

1

p2

[

A0(m2)B0(p, {m}34) + n SC

112
(p, {m}1234) + m2

1 SC

0
(p, {m}1234)

]

,

SC

121
=

1

2

1

(n − 1) p4

{

− p2 A0([m1, m2])B0(p, {m}34) + p2 m2
123 SC

0
(p, {m}1234)

− p2 SA

0
(p, {m}1234) − n

[

lP34 SC

1
(p, {m}1234) + SA

1
(p, {m}124)

]}

, (88)

SC

221
=

1

4

1

(n − 1) p4

{

λ34 SC

0
(p, {m}1234) − lP43

[

SA

0
(p, {m}124) + SA

0
(0, {m}123)

]

− 2 p2 SA

2
(p, {m}124)

+ (n − 1)
[

(λ34 − 4 p2 m2
3)SC(p, {m}1234) + (3 p2 − m2

3 + m2
4)SA

0
(p, {m}124)

− lP34 SA

0
(0, {m}123) − 2 p2 SA

2
(p, {m}124)

]}

, (89)

SC

122
=

1

2

1

n − 1

[

A0([m1, m2])B0(p, {m}34) − m2
132 SC

0
(p, {m}123) + SA

0
(p, {m}124)

+ lP34 SC

1
(p, {m}1234) + SA

1
(p, {m}124)

]

, (90)

SC

222
=

1

4

1

(n − 1)p2

{

−λ34S
C

0
(p, {m}1234)+lP43

[

SA

0
(p, {m}124)+SA

0
(0, {m}123)

]

+p2SA

2
(p, {m}124)

}

, (91)
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SC

2
=

1

2 p2

[

−lP34 SC

0
(p, {m}1234) − SA

0
(p, {m}124) + SA

0
(0, {m}124)

]

, (92)

SE

111
= −

1

p2

[

A0(m2)B0(2, 1 ; p, {m}34) + n SE

112
(p, {m}12343) + m2

1 SE

0
(p, {m}12343)

]

, (93)

SE

121
=

1

2

1

(n − 1)p2

[

A0([m1, m2])C0(p,−p, {m}343) + m2
123 SE

0
(p, {m}12343) − SC

0
(p, {m}1234)

− n lP34 SE

1
(p, {m}12343) − n SC

1
(p, {m}1234)

]

, (94)

SE

221
=

1

4

1

(n − 1)p4

{

(n l2p34 + 4 p2 m2
3)SE

0
(p, {m}12343) + 2 (n lp34 − 2 p2)SC

0
(p, {m}1234)

− n lp34 SC

0
(0, {m}1233) + n

[

SA

0
(p, {m}124) − SA

0
(0, {m}123)

]}

, (95)

SE

122
=

1

4

1

(n − 1)

[

A0([m1, m2])B0(2, 1 ; p, {m}34) − m2
123 SE

0
(p, {m}12343) + SC

0
(p, {m}1234)

+ lp34 SE

1
(p, {m}12343) + SC

1
(p, {m}1234)

]

, (96)

SE

222
=

1

4

1

(n − 1)p2

[

− λ34 SE

0
(p, {m}12343) + 2 lp43 SC

0
(p, {m}1234)

+ lp34 SC

0
(0, {m}1233) − SA

0
(p, {m}124) + SA

0
(0, {m}123)

]

, (97)

SE

2
=

1

2 p2

[

− lp34 SE

0
(p, {m}12343) − SC

0
(p, {m}1234) + SC

0
(0, {m}1233)

]

, (98)

SD

111
=

1

4

1

(n − 1) p4

{

(n l2p12 + 4 m2
1 p2)SD

0
(p, {m}12345) − n lp12 SC

0
(p, {m}1345)

−
[

4 p2 − n (3 p2 − m2
12)

]

SC

0
(p, {m}2354) + 2 n p2

[

SC

1
(p, {m}1345) + SC

1
(p, {m}2354)

]}

, (99)

SD

121
=

1

4

1

(n − 1) p4

{

−2 p2 B0(p, {m}12)B0(p, {m}45)

+ (n (p4 + p2 m2
245 − p2 m2

1 + m2
12 m2

45) + 2 m2
134 p2)SD

0
(p, {m}12345)

− n lp45 SC

0
(p, {m}1345) − (2 p2 − n lp45)SC

0
(p, {m}2354) − n lp12 SC

0
(p, {m}4312)

− (2 p2 − n lp12)SC

0
(p, {m}5321) − n

[

SA

0
(p, {m}432) + SA

0
(p, {m}531)

]

+ n
[

SA

0
(0, {m}431) + SA

0
(0, {m}532)

]}

, (100)

SD

221
=

1

4

1

(n − 1) p4

{

(4 m2
4 p2 + n l2p45)SD

0
(p, {m}12345) − n lp54 SC

0
(p, {m}4312)

−
[

4 p2 − n (3 p2 − m2
45)

]

SC

0
(p, {m}5321) + 2 n p2 SC

1
(p, {m}4312) + 2 n SC

1
(p, {m}5321)

}

, (101)
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SD

112
=

1

4

1

(n − 1) p2

[

−λ12 SD

0
(p, {m}12345) + lp12 SC

0
(p, {m}1345) + lp21 SC

0
(p, {m}2354)

− 2 p2 SC

1
(p, {m}1345) + 2 p2SC

1
(p, {m}2354)

]

, (102)

SD

122
=

1

4

1

(n − 1) p2

[

2 p2 B0(p, {m}12)B0(p, {m}45)

+
[

m2
12 m2

54 − p2 (m2
1 + m2

2 − 2m2
3 + m2

4 + m2
5) − p4

]

SD

0
(p, {m}12345)

+ lp45 SC

0
(p, {m}1345) + lp54 SC

0
(p, {m}2354) + lp12 SC

0
(p, {m}4312) + lp21 SC

0
(p, {m}5321)

+ SA

0
(p, {m}432) + SA

0
(p, {m}531) − SA

0
(0, {m}431) − SA

0
(0, {m}532)

]

, (103)

SD

222
=

1

4

1

(n − 1) p2

[

−λ45 SD

0
(p, {m}12345) + lp45 SC

0
(p, {m}4312) + lp54 SC

0
(p, {m}5321)

− 2 p2 SC

1
(p, {m}4312) − 2 p2 SC

1
(p, {m}5321)

]

, (104)

SD

1
=

1

2p2

[

− lp12 SD

0
(p, {m}12345) + SC

0
(p, {m}1345) − SC

0
(p, {m}2354)

]

, (105)

SD

2
=

1

2p2

[

− lp45 SD

0
(p, {m}12345) + SC

0
(p, {m}4312) − SC

0
(p, {m}5321)

]

. (106)

The standard reduction procedure does not work for the SC

1
and SE

1
form factors, since for them the scalar

product p ·q1 is irreducible. In order to express these form factors in term of other scalar functions, it is then
necessary to employ the procedure outlined in Section 5, i.e. considering first the scalarization with respect
to the sub-loops. Employing Eq.(131) one obtains the following relations

SC

1
=

1

4

1

m2
3p

2

{

A0([m1, m2])
[

A0(m3) − B0(p, {m}34) lp34 + B0(p, 0, m4) (p2 + m2
4)

]

− SC

0
(p, {m}1234) lp34 m2

123 + SC

0
(p, {m}12, 0, m4)m2

12 (p2 + m2
4) − SA

0
(p, {m}124)m2

3

+ SA

0
(0, {m}123)m2

123 − SA

0
(0, {m}12, 0)m2

12

}

, (107)

SE

1
=

1

4

1

m4
3p

2

{

A0([m1, m2])
[4 − n

2
A0(m3) − B0(p, {m}34) (p2 + m2

4) + B0(p
2, 0, m4) (p2 + m2

4)

− m2
3 lp34 B0(2, 1 ; p, {m}34)

]

− m2
3 lp34 m2

123 SE

0
(p, {m}12343)

−
[

(m2
12 (p2 + m2

4) + m4
3

]

SC

0
(p, {m}1234)

+ m2
12 (p2 + m2

4)SC

0
(p, {m}12, 0, m4) + m2

3 m2
123 SC

0
(0, {m}1233)

+ m2
12

[

SA

0
(0, {m}123) − SA

0
(0, {m}12, 0)

]}

. (108)

8 Strategies for the evaluation of two-loop self-energies

In this Section we provide an explicit example of possible strategies to evaluate diagrams with a non-
trivial spin structure. Consider the diagram in Fig. 4, representing one of the two-loop contributions to the
Z-boson self-energy (the diagram may be needed to assemble the components of a scattering amplitude or to
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Figure 4: Example of a diagram belonging to the SC-family and contributing to the Z self-energy. Dashed lines
represent a H-field.

compute a doubly-contracted WST identity, in which case we have to multiply the corresponding expression
by pµpν). In the Rξ-gauge, with [ξ] = (q2 + p)2 + ξ2 M2

Z
the diagram is be written as

Sµν = −
3

8

g4 M2
H

c4
θ

µ2ǫ

∫

dnq1 dnq2

{ δµν

[ξ = 1]
+

(q2 + p)µ(q2 + p)ν

M2
Z

[ 1

[ξ = 1]
−

1

[ξZ ]

]

}

×
1

(q2
1 + M2

H
) [(q1 − q2)2 + M2

H
] (q2

2 + M2
H

)
= −

3

8

g4 π4 M2
H

c4
θ M2

Z

(

Πd δµν + Πp pµ pν

)

. (109)

After multiplication by pµpν we can perform all the algebraic manipulations, like rewriting q2 · p and q2
2 in

terms of propagators, or we can use Eq.(85) and the results of Section 7 in order to obtain a fully scalarized
expression. Alternatively, again using Eq.(85), we can write

Πd = SC

222
(1) − SC

222
(ξZ) + M2

Z
SC

0
(1),

Πp = SC

221
(1) − SC

221
(ξZ) + 2 SC

2
(1) − 2 SC

2
(ξZ) + SC

0
(1) − SE

0
(ξZ), (110)

where we explicitly indicated the dependence on the gauge parameter ξZ . To derive an explicit expression
for the form factors we decompose the diagram according to S = SDP +SSP +SF , where the subscripts refer
to double and single ultraviolet poles and to the finite ultraviolet part. Note, however, that the splitting is
defined only modulus constants. The three components of the result (with a presentation limited here to
the ξ = 1 part) are given in the following list:

SC

0 ; DP
= −

1

ǫ2
− ∆

2

UV
, SC

2 ; DP
= −

1

2
SC

0 ; DP
, SC

221 ; DP
=

1

3
SC

0 ; DP
,

SC

222 ; DP
= (

1

6
p2 +

49

6
M2

H
+

1

2
M2

Z
)∆UV

1

ǫ
+ (

1

12
p2 −

5

4
M2

H
+

1

4
M2

Z
)∆2

UV
, (111)

SC

0 ; SP
= 2 ∆UV

[

∫ 1

0

dx lnχ(x) −
1

2

]

, SC

2 ; SP
=

1

4
∆UV

[

1 − 8

∫ 1

0

dxx lnχ(x)
]

,

SC

221 ; SP
= 2 ∆UV

[

∫ 1

0

dxx2 lnχ(x) −
1

36

]

,

SC

222 ; SP
=

20

9
M2

H
∆UV − (

5

72
p2 +

97

8
M2

H
+

13

24
M2

Z
)∆UV +

23

3
M2

H
lnµ2

H ∆UV

+ ∆UV

∫

dCS (x ; y, z)
{

−
[

3 y M2
H

+ 3 (p2 − M2
H

+ M2
Z
) z − 4 z2 p2

]

lnχ(x, y, z)

+ M2
H

(3 y − 2)
[ lnχ(x, y, z)

x

∣

∣

∣

+
−

lnχ(x, y, z)

x − 1

∣

∣

∣

+

]}

, (112)
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SC

F
=

∫

dCS (x ; y, z)
lnχ(x, y, z)

1 − y

∣

∣

∣

+
+

∫ 1

0

dx lnχ(x)
[

L1(x) + 2
]

−
3

2
−

1

2
ζ(2),

SC

2 ; F
= −

∫

dCS (x ; y, z) z
lnχ(x, y, z)

1 − y

∣

∣

∣

+
−

∫ 1

0

dxx lnχ(x)
[

L1(x) + 2
]

+
11

16
+

1

4
ζ(2),

SC

221 ; F
=

∫

dCS (x ; y, z) z2 lnχ(x, y, z)

1 − y

∣

∣

∣

+
+

∫ 1

0

dxx2 ln χ(x)
[

L1(x) + 2
]

−
97

216
−

1

6
ζ(2),

SC

222 ; F
=

∫

dCS (x ; y, z)
{

M2
H

(1 −
3

2
y) ln(1 − x)

(

lnχ(x, y, z)

x

∣

∣

∣

+

)

+
3

2

[

y M2
H

+ (p2 − M2
H

+ M2
Z
) z − 6 z2 p2

]

lnχ(x, y, z)L2(x, y, z)

−
5

2

[

y M2
H

+ (p2 − M2
H

+ M2
Z
) z − z2 p2

]

lnχ(x, y, z)

+ M2
H

(
3

2
y − 1) ln2(1 − x)

(

lnχ(x, y, z)

x

∣

∣

∣

+

)

+
5

2
M2

H
(1 − y)

[ lnχ(x, y, z)

x − 1

∣

∣

∣

+
−

lnχ(x, y, z)

x

∣

∣

∣

+

]

+ M2
H

(
3

2
y − 1)

[ lnχ(x, y, z)L2(x, y, z)

x − 1

∣

∣

∣

+
−

lnχ(x, y, z)L2(x, y, z)

x

∣

∣

∣

+

]}

+
5

36
M2

H
lnµ2

h

+
[ 1

24
p2 −

43

24
M2

H
+

1

8
M2

Z

]

ζ(2) +
145

864
p2 −

1

3
ζ(3)M2

H
+

9247

864
M2

H
+

251

288
M2

Z
. (113)

Here ζ(n) denotes the Riemann zeta function. To derive our result we introduced the auxiliary functions

χ(x) = x (1 − x) sp + µ2
H

(1 − x) + µ2
Z

x, µ2
x = µ2

H

( 1

x
+

1

1 − x

)

,

χ(x, y, z) = x (1 − x)
[

z (1 − z) sp + µ2
H

(y − z) + µ2
Z

z
]

+ µ2
x (1 − y), (114)

where sp = sign (p2) and µ2
H

= M2
H

/ | p2 |, µ2
Z

= M2
Z
/ | p2 |. We define L1,2,

L1(x) = ln(1 − x) − lnχ(x) , L2(x, y, z) = lnχ(x, y, z) − ln(1 − y) − lnx − ln(1 − x). (115)

The ′+′-distribution is used according to the definitions of Eq.(7).
In conclusion we may say that Eqs.(111)–(113) prove that whenever we can find an algorithm of smooth-

ness for scalar integrals, then the same algorithm can be generalized to handle tensor integrals. The whole
diagram, or even sets of diagrams, can be successively mapped into one multi-dimensional integral. The
only additional complication is represented by those cases where the scalar diagram is ultraviolet convergent
while tensors of the same family diverge; in this case one cannot set ǫ = 0 from the very beginning but,
apart from this caveat, the procedure will be essentially the same.

9 Reduction of tensor two-loop three-point functions

In this Section we move to the complex environment of three-point functions. Two independent external
momenta induce seven scalar products containing q1 and/or q2, and the number of irreducible ones is 7 − I
where I is the number of internal lines in the diagram (note that 4 ≤ I ≤ 6); the choice of the set of
irreducible scalar products has, of course, some arbitrariness. In any case, for two-loop diagrams we never
have complete reducibility with respect to both q1 and q2. Actually, in evaluating observables for physical
processes, we encounter a more general situation: massive SM gauge bosons are unstable particles and final
states are always made up of stable fermions and/or photons. Referring to Fig. 5 we have propagators that
depend on p1 and p2 + p3, therefore losing full reducibility in the q2 sub-loop. The whole procedure will be
developed on a diagram-by-diagram basis with the double goal of writing explicit integral representations
for all form factors and of deriving a suitable algorithm to express them in terms of ordinary and generalized
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p2

p1

Z

−P

H

Figure 5: A contribution of the V K family to H → Z∗Z → Zff . External momenta flow inwards.

scalar functions. Therefore, for each set of graphs, we will show that all integrals can be expressed in terms of
generalized scalar functions, part of which should be subsequently treated within the context of generalized
recurrence relations [27]; the final answer will contain a limited number of master integrals.

Alternatively, and this represents our preferred solution, all the integrals not belonging to S4 – the class
of ordinary scalar functions in n = 4 − ǫ dimensions – can be evaluated according to the given integral
representation, following the same lines that we have already adopted in II and in III for solving the problem
in the S4 class.

For each diagram there are many equivalent ways to assign loop momenta; we will make a specific choice
for the matrix η of Eq.(2) (the defining parametric representation of the graph) and stick to it also when
diagrams of a given family appear in the result of the reduction of the tensor integrals of other families. In
these cases the necessary permutations of momenta should be performed, as it will be shown in Section 10.

In our presentation the different families are ordered according to the choice made in [5], where the
scalar members were computed explicitly and where the ordering was dictated by a criterion of increasing
complexity in the evaluation and by the fact that three graphs belong to the same class V 1N1. Therefore, in
the following subsections we present and discuss techniques for treating {V E, V I , V M} ∈ V 1N1 and the more
complicated ones, V G, V K and V H. A complete summary of all results for reduction of three-point functions
is provided in Appendix B.

9.1 The V E-family (α = 1, β = 2, γ = 1)

We start our analysis considering the scalar member of the V E-family of Fig. 6, which is representable as

π4 V E

0
(p2, P, {m}1234) = µ2ǫ

∫

dnq1

∫

dnq2
1

[1][2]E[3]E[4]E
, (116)

with propagators defined by

[1] ≡ q2
1 + m2

1, [2]E ≡ (q1 − q2)
2 + m2

2, [3]E ≡ (q2 + p2)
2 + m2

3, [4]E ≡ (q2 + P )2 + m2
4. (117)

Note the symmetry property V E

0
(p2, P, {m}1234) = V E

0
(P, p2, {m}1243), besides the one shown in Eq.(438) of

Appendix C.
The scalar diagram is overall divergent and so is the (α, γ) sub-diagram. Vector and tensor integrals for

all classes usually show additional ultraviolet divergences which have been transferred from the momentum
integration to the parametric one. Also for this reason we will keep the n dependence explicit, i.e. n 6=
4 (ǫ 6= 0) in all parametrizations. In the following we will discuss vector and rank two tensor integrals for all
families. Rank three tensor are fully analyzed in Section 9.7.
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Figure 6: The irreducible two-loop vertex diagrams V E. External momenta flow inwards. Internal masses are
enumerated according to the parametrization of Eq.(117).

9.1.1 Vector integrals in the V E family

We also consider the V E vector integrals and introduce the following decomposition in terms of the p1 , p2

basis:

V E(µ | 0 ; p2, P, {m}1234) =
∑

i=1,2

V E

1i
(p2, P, m1234) piµ,

V E(0 |µ ; p2, P, {m}1234) =
∑

i=1,2

V E

2i
(p2, P, {m}1234) piµ. (118)

Note that we always use the convention V X(p | 0 ; · · ·) = pµ V X(µ | 0 ; · · ·).
V E will often appear in the reduction of the form factors belonging to other families and special care

should be applied in writing the correct list of arguments. To help understanding this list we rewrite V E

ij

according to the following equation:

µ2ǫ

π4

∫

dnr1d
nr2 riµ

d
∏

l=a

D−1
l ≡ V E

i1
(kc, kd, {m}abcd) (kd − kc)µ + V E

i2
(kc, kd, {m}abcd) kcµ, (119)

where the propagators are now generically written as

Da = r2
1 + m2

a , Db = (r1 − r2)
2 + m2

b , Dc = (r2 + kc)
2 + m2

c , Dd = (r2 + kd)
2 + m2

d. (120)

Here i = 1, 2 and ma, . . . , md are generic masses, kc and kd are the external momenta appearing in the
propagators Dc and Dd, respectively, and r1, r2 are the loop momenta. Note that the following identities
hold:

V E

i1
(c, d) = −V E

i1
(d, c) + V E

i2
(d, c), V E

i2
(c, d) = V E

i2
(d, c), (121)

where (c, d) = (kc, kd, {m}abcd) etc. Therefore, Eqs.(119)–(120) tell us how to identify the proper list of
arguments when these integrals appear as the result of a reduction of tensor integrals belonging to other
classes and a permutation has been applied in order to conform to the convention of Eq.(120).

As we explained earlier, all these form factors could be computed directly, without having to perform a
reduction. For this reason it is important to list their integral representation. The explicit expression for
the vector form factors of this family is

V E

ij
= −Γ (ǫ)

∫

DVE Pij;E χ−ǫ
E

(x, y, z), (122)

P00;E = 1, P11;E = −x z, P12;E = −x y, P21;E = −z, P22;E = −y, (123)
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with an integration measure defined as follows:

∫

DVE = ωǫ

∫

dCS (x ; y, z)
[

x (1 − x)
]−ǫ/2

(1 − y)ǫ/2−1, (124)

where ω is defined in Eq.(15) and where, with our choice for the Feynman parameters, the polynomial χ
E

is
given by

χ
E
(x, y, z) = −F (z, y) + (p2

2 − m2
x + m2

3) y + (2 p12 + l134) z + m2
x, (125)

where we used Eq.(12). All these functions can be manipulated according to the procedure introduced in III
and they will give rise to smooth integral representations.

The generic scalar function in this family is

V
α1|α3,α4|α2

E (n =

4
∑

i=1

αi − ǫ) = π−4(µ2)4−n

∫

dnq1

∫

dnq2

4
∏

i=1

[i]−αi
E

= −
Γ (ǫ)

∏4
i=1 Γ (αi)

ωρ0

∫

dCS (x ; y, z)xρ1 (1 − x)ρ2 (1 − y)ρ3(y − z)ρ4zρ5χ−ǫ
E

(x, y, z), (126)

where [1]E ≡ [1], ω is defined in Eq.(15), with powers ρ0 = 4 −
∑4

j=1 αj + ǫ and

ρ1 =
1

2
(−α1 + α2 + α3 + α4) − 1 −

ǫ

2
, ρ2 =

1

2
(α1 − α2 + α3 + α4) − 1 −

ǫ

2
,

ρ3 =
1

2
(α1 + α2 − α3 − α4) − 1 +

ǫ

2
, ρ4 = α3 − 1, ρ5 = α4 − 1. (127)

Henceforth, for the form factors of Eq.(118) we can write

V E

ij
=

4
∑

l=1

ωnlij−4+ǫ klij V
α1lij |α3lij ,α4lij |α2lij

E (nlij), (128)

with ω defined in Eq.(15) and nlij =
∑4

k=1 αklij − ǫ. The coefficients klij and the exponents αlij , can be
easily read out of the following explicit expressions:

V E

11
= −ω2 V

1 | 1,2 | 2
E , V E

12
= −ω2

[

V
1 | 2,1 | 2

E + V
1 | 1,2 | 2

E

]

, V E

21
= −ω2

[

V
2|1,2|1

E + V
1|1,2|2

E

]

,

V E

22
= −ω2

[

V
2|2,1|1

E + V
2|1,2|1

E + V
1|2,1|2

E + V
1|1,2|2

E

]

, (129)

all to be evaluated for n = 6 − ǫ. As usual, there still is the problem of evaluating the integrals of Eq.(129)
by means of recurrence relations or, in other words, to link all of them to MI and to develop an algorithm
to evaluate the master integrals.

Based on our experience with one-loop multi-leg diagrams, we propose an alternative: an algorithm for
the evaluation of tensor integrals offering the same stability characteristics as for scalar integrals. More
precisely, we mean a result which is, from a numerical point of view, of the same degree of stability for
all integrals and where the real nature of any singularity, apparent or not, is independent of the rank of
the integral under consideration. Let us start with V E(µ | 0), where sub-loop reduction techniques may be
applied giving

∫

dnq1
q1µ

[1][2]E
= XE q2µ, (130)

and where XE by standard methods is computed to be

XE =
1

2

∫

dnq1

{ 1

[1][2]E
+

1

[0]E

[ m2
21

[1][2]E
−

1

[1]
+

1

[2]E

]}

, (131)
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with [0]E = q2
2 . As a consequence of this result we obtain

V E(µ | 0 ; p2, P, {m}1234) =
1

2

[

m2
21 V I(0 |µ ; p2, P, {m}12, 0, {m}34) + V E(0 |µ ; p2, P, {m}1234)

− Cµ(p2, p1, 0, {m}34)A0([m2, m1])
]

, (132)

so that the q1µ vector integral in the E-family is related to the q2µ vector integrals of the I − E families.
The function Cµ in Eq.(132) is defined in Eq.(20), the I family will be discussed in Section 9.2. For the
V E-family we have partial reducibility, i.e. V E(0| p1) can be expressed in term of known quantities:

V E(0| p1; p2, P, {m}1234) = −
1

2

[

(l134 + 2p12)V
E

0
(p2, P, {m}1234) − SA

0
(p2, {m}123) + SA

0
(P, {m}124)

]

. (133)

Thus we can write

V E(0 | p1 ; p2, P, {m}1234) = p2
1 Izy;E + p1 · P

[

Iy;E − V E

0
(p2, P, {m}1234)

]

, (134)

where two new quantities were introduced,

Izy;E = Γ (ǫ)

∫

DVE (z − y)χ−ǫ
E

, Iy;E = −Γ (ǫ)

∫

DVE (1 − y)χ−ǫ
E

. (135)

Similarly, we derive

V E(0 | p2 ; p2, P, {m}1234) = p1 · p2 Izy;E + p2 · P
[

Iy;E − V E

0
(p2, P, {m}1234)

]

. (136)

Assuming p2
1 6= 0, we can eliminate one of the two unknowns from Eq.(134) obtaining

p2
1 Izy;E = − p1 · P

[

Iy;E − V E

0
(p2, P, {m}1234)

]

+ V E(0 | p1 ; p2, P, {m}1234), (137)

and express V E(0 | p2) in terms of standard functions and Iy;E, which is the integral of Eq.(126) with α =
β = 2 and γ = δ = 1, corresponding to n = 6−ǫ. Hence, one generalized scalar function in shifted space-time
dimension suffices in this class, although we certainly prefer to use V E(0|p2) in n = 4 − ǫ dimensions, for
which we can derive a smooth integral representation.

9.1.2 Rank two tensor integrals in the V E family

Tensor integrals with two powers of momenta in the numerator can be treated in a similar way. New
ultraviolet divergences arise; for instance with a q1µ q2ν numerator also the (α, β) sub-diagram is divergent.
We define a decomposition according to

V E(µ, ν | 0 ; · · ·) = V E

111
p1µ p1ν + V E

112
p2µ p2ν + V E

113
{p1 p2}µν + V E

114
δµν , (138)

where the list of arguments has been suppressed and where {p k}µν is defined in Eq.(13). Strictly analogous
definitions hold for the q1µq2ν tensor integrals (V E

12i form factors) and for the qµ
2 qν

2 ones (V E

22i form factors).
Consider first the form factors in the 22i series; taking the trace in Eq.(138) gives

n V E

224
+ p2

1 V E

221
+ 2 p12V

E

223
+ p2

2 V E

222
= − (p2

2 + m2
3)V E

0
− 2

[

p12 V E

21
+ p2

2 V E

22

]

+ SA

0
(P, {m}124). (139)

As a second step we multiply Eq.(138) by p1ν and obtain

V E

224
+ p2

1 V E

221
+ p12 V E

223
=

1

2

[

− (l134 + 2 p12)V E

21
+ SA

0
(P, {m}124) + SA

2
(P, {m}124)

]

,

p12 V E

222
+ p2

1 V E

223
=

1

2

[

− (l134 + 2 p12)V E

22

+ SA

0
(P, {m}124) − SA

0
(p2, {m}123) + SA

2
(P, {m}124) − SA

2
(p2, {m}123)

]

. (140)
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Eqs.(138)–(140) give a system of three equations for four unknowns; for one of the form factors we can write
a combination of two generalized scalar functions, e.g.

V E

224
=

1

2
ω2

[

V
2|1,1|1

E + V
1|1,1|2

E

] ∣

∣

∣

n=6−ǫ
, (141)

where ω is defined in Eq.(15), and solve Eqs.(138)–(140) in terms of the generalized scalar functions. An
alternative procedure is based on the following integral representations:

V E

22i
= −Γ (ǫ)

∫

DVE P22i;E χ−ǫ
E

(x, y, z), i 6= 4, V E

224
= −

1

2
Γ (ǫ − 1)

∫

DVE χ1−ǫ
E

(x, y, z) ,

P221;E = z2, P222;E = y2, P223;E = y z. (142)

The three integrals can be computed via their representation, following the general strategy already adopted
for scalar integrals. Similar representations hold for the remaining tensor integrals, for instance we obtain

V E

124
= −

1

2
Γ (ǫ − 1)

∫

DVE xχ1−ǫ
E

(x, y, z),

V E

114
= −Γ (ǫ)

∫

DVE

{

−
x(1 − x)

2 − ǫ

[1

2

4 − ǫ

ǫ − 1
χ

E
+ RE

]

+
1

2

x2

ǫ − 1
χ

E

}

χ−ǫ
E

,

P12i;E = xP22i;E , P11i;E = x2 P22i;E for i 6= 4, RE = F (z, y) + m2
x, (143)

with F defined in Eq.(12). Note the singularity hidden in the x-integration in the formulae above. The
q1µq2ν tensor integrals are easily reduced as the following relation holds:

V E(µ | ν ; p2, P, {m}1234) =
1

2

[

m2
21 V I(0 |µ , ν ; p2, P, {m}12, 0, {m}34) + V E(0 |µ , ν ; p2, P, {m}1234)

+ Cµν(p2, p1, 0, {m}34)A0([m2, m1])
]

, (144)

while those with q1µq1ν require some additional work. To derive the corresponding result we start with

∫

dnq1
q1µ q1ν

[1][2]E
= B22;E δµν + B21;E q2µ q2ν , (145)

where the sub-loop form factors are

B22;E =
1

n − 1
(X1;E − X2;E), B21;E =

1

q2
2

(X2;E − B22;E), (146)

and also

X1;E =

∫

dnq1

[ 1

[2]E
−

m2
1

[1][2]E

]

, (147)

X2;E =
1

4

∫

dnq1

[q2
2 + 2 m2

21

[1][2]E
+

m4
12

[0]E[1][2]E
+

3

q2
1 + m2

2

−
1

[1]
+ m2

12

( 1

[0]E[1]
−

1

[0]E[2]E

)]

, (148)

with [0]E = q2
2 . The complete result reads as follows:

V E(µ, ν | 0 ; · · ·) =
1

4 (n − 1)

[

V E

A
δµν + V E

B,µν

]

, (149)

V E

A
= −m4

12 V I

0
(p2, P, {m}12, 0, {m}34) − 2 (m2

1 + m2
2)V E

0
(p2, P, {m}1234) − V E(0|µ, µ; p2, P, {m}1234)

− A0(m1)
[

m2
21 C0(p2, p1, 0, {m}34) + B0( p1, {m}34)

]

− A0(m2)
[

m2
12 C0(p2, p1, 0, {m}34) + B0( p1, {m}34)

]

,
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V E

B,µν = n m4
12 V M(0 |µ, ν ; p1, P, {m}12, 0, {m}34, 0)

+ 2 (n m2
21 + 2 m2

1)V I(0 |µ, ν ; p2, P, {m}12, 0, {m}34) + n V E(0 |µ, ν ; p2, P, {m}1234)

− n A0(m1)
[

m2
12 Cµν(2, 1, 1 ; p2, p1, 0, {m}34) − Cµν(p2, p1, 0, {m}34)

]

− A0(m2)
[

(3 n − 4)Cµν(p2, p1, 0, {m}34) + n m2
21 Cµν(2, 1, 1 ; p2, p1, 0, {m}34)

]

, (150)

which concludes our analysis of the V E-family; note that V E

B,µν can be further decomposed following the
standard procedure and also contributes to the δµν part of V E(µ, ν | 0 ; · · ·). Also for the q2µq2ν tensor
integrals we can write down a system of equations and solve it, or we can use their explicit representations.
In Eq.(150) we used generalized C-functions; since these functions refer to one-loop diagrams we have full
reducibility of tensors while the scalars can be expressed in terms of standard C0(1, 1, 1) and B0(1, 1) functions
by repeated applications of IBP identities; one should only be aware of the appearance of denominators
vanishing at the anomalous threshold. Once again, we could use their explicit parametric representations
treated with the BT-algorithm.

Results for this family are summarized in Appendix B.1. V E

0
≡ V 121

0
is discussed in Sect. 5.1 of III, the

evaluation of the corresponding form factors is addressed in Section 11.1. Note that χ
E

(Eq.(125)) is defined
in Eq. (62) of III by rescaling by 1/|P 2|, a normalization which is better suited for numerical integration and
that we have used for all the χ functions of III. The same comment (rescaling χ by 1/|P 2| in III) applies to
all families of diagrams. The νi of Eqs. (62) – (63) of III, defined in Eq. (7) of the same paper, coincide with
the νi quantities defined in Eq.(297) of the present paper.

9.2 The V I-family (α = 1, β = 3, γ = 1)

We continue our derivation considering the scalar function in the V I-family of Fig. 7, where only the
(α, γ) sub-diagram is ultraviolet divergent. This function is representable as

π4 V I

0
(p1, P, {m}12345) = µ2ǫ

∫

dnq1

∫

dnq2
1

[1][2]I [3]I [4]I [5]I
, (151)

with propagators

[1] ≡ q2
1 + m2

1, [2]I ≡ (q1 − q2)
2 + m2

2, [3]I ≡ q2
2 + m2

3,

[4]I ≡ (q2 + p1)
2 + m2

4, [5]I ≡ (q2 + P )2 + m2
5. (152)

Note the symmetry property V I

0
(p1, P, {m}12345) = V I

0
(P, p1, {m}12354), besides the one of Eq.(438).

−P

p1

p2

1

2
3

4

5

V I

Figure 7: The irreducible two-loop vertex diagrams V I . External momenta flow inwards. Internal masses are
enumerated according to Eq.(152).
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9.2.1 Vector integrals in the V I family

By standard methods we write a decomposition of the vector integrals into form factors

V I(µ | 0 ; p1, P, {m}12345) =
∑

i=1,2

V I

1i
(p1, P, {m}12345) piµ,

V I(0 |µ ; p1, P, {m}12345) =
∑

i=1,2

V I

2i
(p1, P, {m}12345) piµ. (153)

As we mentioned earlier, special care must be used when V I

ij
appears in the reduction of other form factors

and one has to bring the integrand in a form adhering to Eq.(151); this can be done using the definition,

µ2ǫ

π4

∫

dnr1 dnr2 riµ

e
∏

l=a

D−1
l ≡ V I

i1
(kd, ke, {m}abcde) kdµ + V I

i2
(kd, ke, {m}abcde) (ke − kd)µ , (154)

where, with an obvious notation

Da = r2
1 + m2

a , Db = (r1 − r2)
2 + m2

b , Dc = r2
2 + m2

c ,
Dd = (r2 + kd)

2 + m2
d , De = (r2 + ke)

2 + m2
e.

Note that the following identities hold:

V I

i1
(d, e) = V I

i1
(e, d), V I

i2
(d, e) = V I

i1
(e, d) − V I

i2
(e, d), (155)

where (d, e) = (kd, ke, {m}abcde) etc. The explicit expression for the form factors of Eq.(153) is

V I

ij
= −Γ (1 + ǫ)

∫

DVI Pij;I χ−1−ǫ
I

,

P00;I = 1, P1i;I = xP2i;I , P21;I = −z1, P22;I = −z2, (156)

where P00 is the factor corresponding to the scalar integral and, with our choice for the Feynman parameters,
the polynomial χ

I
is

χ
I
(x, y, z1, z2) = −F (z1, z2) + l134 z1 + (l245 + 2 p12) z2 + (m2

3 − m2
x) y + m2

x, (157)

where F and m2
x are defined in Eq.(12). Finally, the integration measure is

∫

DVI = ωǫ

∫

dCS (x ; y, z1, z2)
[

x (1 − x)
]−ǫ/2

(1 − y)ǫ/2−1, (158)

with ω defined in Eq.(15). All these functions can be manipulated according to the procedure introduced in
III with correspondingly smooth integral representations.

This family is the first example of a vertex with full q2 reducibility. Consider the q1 vector integral: for
the case m3 6= 0 and by methods similar to the ones used in Section 9.1 for V E we obtain

V I(µ | 0 ; p1, P, {m}12345) =
1

2

m2
123

m2
3

V I(0 |µ ; p1, P, {m}12345) −
1

2

m2
12

m2
3

V I(0 |µ ; p1, P, {m}12, 0, {m}45)

−
1

2m2
3

A0([m1, m2])
[

Cµ(p1, p2, {m}345) − Cµ(p1, p2, 0, {m}45)
]

. (159)

Furthermore, the q2 vector integral can be reduced according to the following relation:

V I(0|p1; p1, P, {m}12345) =
1

2

[

−l134V
I

0
(p1, P, {m}12345) − V E

0
(p1, P, {m}1245) + V E

0
(0, P, {m}1235)

]

,

V I(0|p2; p1, P, {m}12345) =
1

2

[

(l154−P 2)V I

0
(p1, P, {m}12345)+V E

0
(0, p1, {m}1234) −V E

0
(0, P, {m}1235)

]

.

(160)
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9.2.2 Rank two tensor integrals in the V I family

All tensor integrals in this class are overall ultraviolet divergent, with a divergent (α, γ) sub-diagram. Adopt-
ing the same notation employed in the analysis of the V E functions, we introduce the form factors V I

ijm,
(m = 1, . . . , 4):

V I(0|µ, ν ; · · ·) = V I

221
p1µ p1ν + V I

222
p2µ p2ν + V I

223
{p1p2}µν + V I

224
δµν , (161)

where the symmetrized product is given by Eq.(13). Taking the trace of both sides in Eq.(161) gives

p2
1 V I

221
+ 2 p12 V I

223
+ p2

2 V I

222
+ n V I

224
= V E

0
(p1, P, {m}1245) − m2

3 V I

0
(p1, P, {m}12345), (162)

while, multiplying both sides of Eq.(161) by p1ν , we have the relations

p2
1V

I

221
+ p12V

I

223
+ V I

224
=

1

2

[

−V E

21
(p1, P, {m}1245) + V E

22
(0, P, {m}1235) − l134V

I

22
(p1, P, {m}12345)

]

,

p12V
I

222
+ p2

1V
I

223
=

1

2

[

−V E

21
(p1, P, {m}1245) + V E

21
(0, P, {m}1235) − l134V

I

21
(p1, P, {m}12345)

]

. (163)

Similarly, contracting Eq.(161) with p2ν , it is possible to write additional identities:

p12 V I

221
+ p2

2 V I

223
= −

1

2

[

V E

21
(0, P, {m}1235) − V E

21
(0, p1, {m}1234) + (lP45 − p2

1)V I

21
(p1, P, {m}12345)

]

,

p2
2 V I

222
+ p12 V I

223
+ V I

224
=

1

2

[

−V E

21
(0, P, {m}1235) − (lP45 − p2

1)V I

22
(p1, P, {m}12345)

]

. (164)

Solving the system formed by Eqs.(162)–(164) it is then possible to express the V I

22i
form factor in terms of

functions V I

2i
and form factors belonging to the V E family.

The integral representation for the V I

22i
functions is the following:

V I

22i
= −Γ (1 + ǫ)

∫

DVI R22i;I χ−1−ǫ
I

, V I

224
= −

1

2
Γ (ǫ)

∫

DVI χ−ǫ
I

,

R221;I = z2
1 , R222;I = z2

2 , R223;I = z1 z2, (165)

showing for instance a double ultraviolet pole for V I

224
. Similar integral representations can be found for the

form factors V I

12i
:

V I

12i
= −Γ (1 + ǫ)

∫

DVI R12i;I χ−1−ǫ
I

, V I

124
= −

1

2
Γ (ǫ)

∫

DVI xχ−ǫ
I

, R12i;I = xR22i;I . (166)

The q1µ q2ν or q1ν q2µ tensor integrals can be written in terms of form factors V I

22i
employing the following

relation, valid for m3 6= 0:
1

[0]I [3]I
=

1

m2
3

( 1

[0]I
−

1

[3]I

)

, (167)

where [0]I = q2
2 ; in this way one obtains

V I(µ|ν ; p1, P, {m}12345) =
m2

123

2m2
3

V I(0|µ, ν ; p1, P, {m}12345) +
m2

21

2m2
3

V I(0|µ, ν ; p1, P, {m}12, 0, {m}45)

−
1

2m2
3

A0([m1, m2])
[

Cµν(p1, p2, {m}345) − Cµν(p1, p2, 0, {m}45)
]

. (168)

The integral representation of the V I

11i
form factors is

V I

11i
= −Γ (1 + ǫ)

∫

DVI R11i;I χ−1−ǫ
I

,

V I

114
= −Γ (ǫ)

∫

DVI χ−ǫ
I

{

−
x(1 − x)

2 − ǫ

[4 − ǫ

2
+ ǫ χ−1

I
RI

]

+
1

2
x2

}

,

R11i;I = x2 R22i;I , RI = F (z1, z2) + m2
x, (169)
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with F defined in Eq.(12), The form factors V I

11i
can be reduced using q1 sub-loop techniques, similarly to

what we did for the V E

11i
functions, and employing Eq.(167). One obtains

V I(µ, ν | 0 ; · · ·) =
1

4 (n − 1)

[

V I

A
δµν + V I

B,µν

]

, (170)

V I

A
=

1

m2
3

{

−A0(m1)
[

m2
123 C0(p1, p2, {m}345) + m2

21 C0(p1, p2, 0, {m}45)
]

− A0(m2)
[

m2
213 C0(p1, p2, {m}345) + m2

12 C0(p1, p2, 0, {m}45)
]

− m2
3 V I(0|µ, µ ; p1, P, {m}12345) +

[

m4
12 − 2 m2

3 (m2
1 + m2

2)
]

V I

0
(p1, P, {m}12345)

− m4
12 V I

0
(p1, P, {m}12, 0, {m}45)

}

,

V I

B,µν =
1

m2
3

{

n m2
3 m4

12

[

V M(0|µ, ν ; p1, P, {m}12, 0, {m}45, 0) − V M(0|µ, ν ; p1, P, {m}12345, 0)
]

− n m2
3 A0(m1)

[

Cµν (p1, p2, {m}345) − Cµν (p1, p2, 0, {m}45)
]

− n m2
12 A0([m1, m2])

[

m2
3 Cµν(2, 1, 1 ; p1, p2, 0, {m}45) − Cµν (p1, p2, 0, {m}45)

+ Cµν (p1, p2, {m}345)
]

+ (3 n − 4)A0(m2)
[

Cµν (p1, p2, {m}345) − Cµν (p1, p2, 0, {m}45)
]

+ m2
3 (2 n m2

12 + n m2
3 − 4 m2

1)V I(0|µ, ν ; p1, P, {m}12345)

− m2
3

[

(n − 4)m2
1 − 2 n m2

2

]

V I(0|µ, ν ; p1, P, {m}12, 0, {m}45)
}

. (171)

Note that V I

B,µν will be further decomposed into δµν and piµpjν terms. Results for this family are summarized
in Appendix B.2. V I

0
≡ V 131

0
is discussed in Sect. 6.1 of III (see comment at the end of Section 9.1.2),

evaluation of form factors in Section 11.2. Note that χ
I
(x, 1, y, z) does not depend on x and, in III, we used

χ
I
(y, z) ≡ χ

I
(x, 1, y, z). In the following Section we move to the discussion of the V M class of diagrams.

9.3 The V M-family (α = 1, β = 4, γ = 1)

The scalar V M function of Fig. 8 is overall ultraviolet convergent with the (α, γ) sub-diagram divergent
and is representable as follows:

π4 V M

0
(p1, P, {m}123456) = µ2ǫ

∫

dnq1

∫

dnq2
1

[1][2]M [3]M [4]M [5]M [6]M
, (172)

with propagators

[1] ≡ q2
1 + m2

1, [2]M ≡ (q1 − q2)
2 + m2

2, [3]M ≡ q2
2 + m2

3,

[4]M ≡ (q2 + p1)
2 + m2

4, [5]M ≡ (q2 + P )2 + m2
5, [6]M ≡ q2

2 + m2
3 . (173)

Note the symmetry property V M

0
(p1, P, {m}123456) = V M

0
(P, p1, {m}123546), as shown in Eq.(438) of Ap-

pendix C. Scalar, vector and rank two tensor integrals have an (α, γ) sub-diagram which is ultraviolet
divergent. As it was pointed out in III, we need to consider just the case m3 = m6 and, as a consequence,
m6 drops from the list of arguments; in fact, when these two masses are different it is possible to rewrite the
integral as a difference of V I-functions.

9.3.1 Vector integrals in the V M family

As usual, we introduce form factors for the vector integrals according to the equations

V M(µ | 0 ; p1, P, {m}12345) =
∑

i=1,2

V M

1i
(p1, P, {m}12345) piµ,
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−P

p1

p2

6

1

2 3

4

5

V M

Figure 8: The irreducible two-loop vertex diagrams V M . External momenta flow inwards. Internal masses are
enumerated according to Eq.(173).

V M(0 |µ ; p1, P, {m}12345) =
∑

i=1,2

V M

2i
(p1, P, {m}12345) piµ, (174)

where the form factors V M

ij
(p, k, {m}a···e) refer to the basis pµ and (k − p)µ.

The integral representation of the form factors introduced in Eq.(174) is obtained employing standard
methods:

V M

ij
= −Γ (2 + ǫ)

∫

DVM Pij;M χ−2−ǫ
M

, (175)

P00;M = 1, P1i;M = xP2i;M , P21;M = −z1, P22;M = −z2, (176)

where the integration measure is

∫

DVM = ωǫ

∫

dCS (x ; y, z1, z2) (y − z1)
[

x (1 − x)
]−ǫ/2

(1 − y)ǫ/2−1, (177)

and ω is defined in Eq.(15); P00 is the factor corresponding to the integral representation of the scalar
function. The polynomial χ

M
is equal to χ

I
.

It is possible to rewrite the q1 vector integral in terms of the q2 vector integral; when m3 6= 0 one finds

V M(µ|0 ; p1, P, {m}12345) =
m2

123

2m2
3

V M(0 |µ ; p1, P, {m}12345) +
m2

12

2m4
3

[V I(0 |µ ; p1, P, {m}12345)

− V I(0 |µ ; p1, P, {m}12, 0, {m}45)] −
A0([m1, m2])

2m4
3

[

Cµ(2, 1, 1 ; p1, p2, {m}345)m2
3

+ Cµ(p1, p2, {m}345) − Cµ(p1, p2, 0, {m}45)
]

. (178)

The q2 vector integrals can be reduced to a linear combination of scalar factors as follows:

V M(0|p1 ; p1, P, {m}12345) =
1

2

[

−V M

0
(p1, P, {m}12345) l134

− V I

0
(p1, P, {m}12345) + V I

0
(0, P, {m}12335)

]

,

V M(0|p2 ; p1, P, {m}12345) =
1

2

[

V M

0
(p1, P, {m}12345) (l154 − P 2)

+ V I

0
(0, p1, {m}12334) − V I

0
(0, P, {m}12335)

]

. (179)
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9.3.2 Rank two tensor integrals in the V M family

The tensor integrals with two powers of the integration momenta in the numerator can be treated analo-
gously to the case of V I . Only the (α, γ) sub-diagram is ultraviolet divergent. Using Eq.(13) we define the
corresponding decomposition as

V M(0|µ, ν ; · · ·) = V M

221
p1µ p1ν + V M

222
p2µ p2ν + V M

223
{p1p2}µν + V M

224
δµν , (180)

and the corresponding form factors V M

11i
and V M

12i
. The symmetrized product is given by Eq.(13). Consider

the form factors of the V22i family: taking the trace in both sides of Eq.(180) one obtains the relation

p2
1 V M

221
+ 2 p12 V M

223
+ p2

2 V M

222
+ n V M

224
= V I

0
(p1, P, {m}12345) − m2

3 V M

0
(p1, P, {m}12345) . (181)

Similarly, contracting Eq.(180) with p1ν we have

p2
1V

M

221
+ p12V

M

223
+ V M

224
=

1

2

[

−V I

21
(p1, P, {m}12345)+ V I

22
(0, P, {m}12335)− l134V

M

21
(p1, P, {m}12345)

]

, (182)

p12V
M

222
+ p2

1V
M

223
=

1

2

[

−V I

22
(p1, P, {m}12345) + V I

22
(0, P, {m}12335) − l134V

M

22
(p1, P, {m}12345)

]

. (183)

Contracting Eq.(180) with p2ν we get instead

p12V
M

221
+ p2

2V
M

223
=

1

2

[

V I

22
(0, p1, {m}12334) − V I

22
(0, P, {m}12335) + (p2

1 − lP45)V
M

21
(p1, P, {m}12345)

]

,

p2
2V

M

222
+ p12V

M

223
+ V M

224
=

1

2

[

−V I

22
(0, P, {m}12335) + (p2

1 − lP45)V
M

22
(p1, P, {m}12345)

]

. (184)

Solving the system given by Eqs.(181)–(184), we can reduce the V M

22i
form factors to linear combinations of

vector and scalar integrals. The integral representation of these form factors is the following:

V M

22i
= −Γ (2 + ǫ)

∫

DVM R22i;M χ−2−ǫ
I

, i 6= 4 , V M

224
= −

1

2
Γ (1 + ǫ)

∫

DVM χ−1−ǫ
M

,

R221;M = z2
1 , R222;M = z2

2 , R223;M = z1 z2. (185)

The form factors of the V M

12i
family can be written in terms of those of the V M

22i
family: in fact we have that

V M(µ|ν ; p1, P, {m}12345) = V M(0|µ, ν ; p1, P, {m}12345)
m2

312

2m2
3

+
m2

12

2 m4
3

[

V I(0|µ, ν ; p1, P, {m}12345)

− V I(0|µ, ν ; p1, P, {m}12, 0, {m}45)
]

−
A0([m1, m2])

2m4
3

[

Cµν(p1, p2, {m}345)

− Cµν(p1, p2, 0, {m}45) + m2
3 Cµν(2, 1, 1 ; p1, p2, {m}345)

]

. (186)

The integral representation of the same form factors is the following:

V M

12i
= −Γ (2 + ǫ)

∫

DVM R12i;M χ−2−ǫ
M

, i 6= 4, V M

124
= −

1

2
Γ (1 + ǫ)

∫

DVM xχ−1−ǫ
M

, (187)

with R12i;M = xR22i;M . Similarly to the case of the V E and V I families, the reduction of q1µq1ν tensor
integrals leads to expressions which are more involved. Introducing the definitions

V M(µ, ν | 0 ; · · ·) =
1

4 (n − 1)

[

V M

A
δµν + V M

B, µν

]

, (188)
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and employing standard techniques one finds

V M

A
=

1

m4
3

{

V M

0
(p1, P, {m}12345)m2

3

[

m4
12 − 2 (m2

1 + m2
2)m2

3

]

− m4
3 V M(0|µ, µ ; p1, P, {m}12345)

+ m4
12

[

V I

0
(p1, P, {m}12345) − V I

0
(p1, P, {m}12, 0, {m}45)

]

− m2
12 A0([m1, m2])

[

C0(p1, p2, {m}345) − C0(p1, p2, 0, {m}45)
]

− m2
3 C0(2, 1, 1 ; p1, p2, {m}345)

[

m2
123 A0(m1) + m2

213 A0(m2)
]}

,

V M

B, µν =
1

m4
3

{

(n m4
123 − 4 m2

1 m2
3)V M(0|µ, ν ; p1, P, {m}12345) + V M(0|µ, ν ; p1, P, {m}12, 0, {m}45)n m4

12

+
2

m2
3

(2 m2
1 m2

3 − n m2
12 m2

123)
[

V I(0|µ, ν ; p1, P, {m}12, 0, {m}45) − V I(0|µ, ν ; p1, P, {m}12345)
]

+ n
(

2
m2

123

m2
3

− 1
)

A0([m1, m2])
[

Cµν(p1, p2, {m}345) − Cµν(p1, p2, 0, {m}45)
]

− n A0([m1, m2])
[

m2
123 Cµν(2, 1, 1 ; p1, p2, {m}345) + m2

12 Cµν(2, 1, 1 ; p1, p2, 0, {m}45)
]

+ 2 (n − 2)A0(m2)
[

Cµν(p1, p2, {m}345) − Cµν(p1, p2, 0, {m}45)

+ m2
3 Cµν(2, 1, 1 ; p1, p2, {m}345)

}

. (189)

Note that V M

B,µν will be further decomposed into δµν and piµpjν terms. The integral representations for the
form factor V M

11i
are the following:

V M

11i
= −Γ (2 + ǫ)

∫

DVM R12i;M χ−2−ǫ
M

, i 6= 4 ,

V M

114
= −Γ (1 + ǫ)

∫

DVM

{

−
x(1 − x)

2 − ǫ

[4 − ǫ

2
+ (1 + ǫ)χ−1

M
RM

]

+
1

2
x2

}

χ−1−ǫ
M

,

R11i;M = x2 R22i;M , RM = F (z1, z2) + m2
x, (190)

with F and m2
x defined in Eq.(12). Consider now the generalized V α1|α2,α3,α4|α5 function where the propa-

gator carrying mass mi is raised to the αi power:

V
α1|α3,α4,α5|α2

M (n) = −
Γ (2 + ǫ)

Π5
i=1 Γ (αi)

ω6−
∑5

j=1
αj+ǫ

∫

dCS (x ; y, z1, z2)

× (1 − y)ρ1 (y − z1)
ρ2 (z1 − z2)

ρ3 xρ4 (1 − x)ρ5 zρ6

2 χ−2−ǫ
M

. (191)

The space-time dimension is n =
∑5

i=1 αi − 2 − ǫ and the various powers appearing in Eq.(191) are:

ρ1 = α1 + α2 −
1

2
(
∑

α − ǫ), ρ2 = α3 − 1, ρ3 = α4 − 1,

ρ4 =
1

2

∑

α − α1 − 2 −
1

2
ǫ, ρ5 =

1

2

∑

α − α2 − 2 −
1

2
ǫ, ρ6 = α5 − 1. (192)

ω is defined in Eq.(15). Results for this family are summarized in Appendix B.3. V M

0
≡ V 141

0
is discussed in

Sects. 8.1–8.2 of III (see comment at the end of Section 9.1.2), evaluation of form factors in Section 11.2.

9.4 The V G-family (α = 2, β = 2, γ = 1)

We continue our analysis considering the scalar function in the V G-family of Fig. 9 which is ultraviolet
convergent with all its sub-diagrams and is representable as

π4 V G

0
(p1, p1, P, {m}12345) = µ2ǫ

∫

dnq1

∫

dnq2
1

[1][2]G[3]G[4]G[5]G
, (193)
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with propagators

[1] ≡ q2
1 + m2

1, [2]G ≡ (q1 + p1)
2 + m2

2, [3]G ≡ (q1 − q2)
2 + m2

3,

[4]G ≡ (q2 + p1)
2 + m2

4, [5]G ≡ (q2 + P )2 + m2
5. (194)

This family represents the first case where the scalar configuration is ultraviolet finite while tensor integrals
are divergent.

−P

p1

p2

1
2

3
4

5

V G

Figure 9: The irreducible two-loop vertex diagrams V G. External momenta flow inwards. Internal masses are
enumerated according to Eq.(194).

9.4.1 Vector integrals in the V G family

Decomposition of vector integrals follows in the usual way:

V G(µ | 0 ; p1, p1, P, {m}12345) =

2
∑

i=1

V G

1i
(p1, p1, P, {m}12345) piµ,

V G(0 |µ ; p1, p1, P, {m}12345) =

2
∑

i=1

V G

2i
(p1, p1, P, {m}12345) piµ, (195)

where the form factors V G

ij
(p, p, k, {m}a···e) refer to the basis pµ and (k − p)µ. Their explicit expression is

V G

ij
= −Γ (1 + ǫ)

∫

DVG Pij;G χ−1−ǫ
G

,

∫

DVG = ωǫ

∫

dS2({x})

∫

dS2({y})
[

x2 (1 − x2)
]−1−ǫ/2

y
ǫ/2
2 ,

P00;G = 1, P11;G = −1 + x1 − x2 (1 − y2) − x2 y2 X, P12;G = x2 (y1 − 1),

P21;G = −1 + y2 X, P22;G = y1 − 1, (196)

where ω is defined in Eq.(15) and X = (1 − x1)/(1 − x2) = 1 − X. The polynomial χ
G

is given by

χ
G

= [x2(1 − x2)]
−1

{

−
1

x2
F (x y2 , x2 y1) + x2 l254 y1

+
[

x2 (M2
x − m2

4 − p2
2 + P 2) − x1 (p2

1 − p2
2 + P 2)

]

y2 + x2 M2
x

}

, (197)

with F defined in Eq.(12) and

x2 x2 M2
x = xm2

1 + x1 m2
2 + x2 m2

3 + x1 x1 p2
1, (198)
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where xi = 1−xi, x = x1−x2. All these functions can be manipulated according to the procedure introduced
in III. The generic scalar function in this family is

V
α1,α2|α3,α4|α5

G (n) = −
Γ (1 + ǫ)

∏5
i=1 Γ (αi)

ω5−
∑5

j=1
αj+ǫ

∫

dS2({x})

∫

dS2({y})χ−1−ǫ
G

× (x1 − x2)
ρ1 (1 − x1)

ρ2 (y1 − y2)
ρ3 (1 − y1)

ρ4 (1 − x2)
ρ5 yρ6

2 xρ7

2 , (199)

with ω defined in Eq.(15), the dimension n =
∑5

i=1 αi − 1 − ǫ and powers

ρi = αi − 1, i = 1, · · · , 4, ρ5 =
1

2

∑

α − α5 − α1 − α2 −
1

2
(1 + ǫ),

ρ6 = α5 + α1 + α2 −
1

2
(
∑

α + 1 − ǫ), ρ7 =
1

2

∑

α − α1 − α2 −
1

2
(3 + ǫ). (200)

Also for this case we have partial reducibility,

V G(p1 | 0 ; p1, p1, P, {m}12345) =
1

2

[

− l112 V G

0
(p1, p1, P, {m}12345) + V E

0
(p1, P, {m}1345)

− V E

0
(0, p2, {m}2345)

]

,

V G(0 | p2 ; p1, p1, P, {m}12345) =
1

2

[

(−l245 − 2 p12)V G

0
(p1, p1, P, {m}12345) − V E

0
(−p2,−P, {m}5321)

+ V E

0
(0,−p1, {m}4321)

]

. (201)

Note that V E

0
(0, p) is equivalent to two-point functions of the SC family, Eq.(80). The system of equations

that we obtain is

V G(p1 | 0) = p2
1 V G

11
+ p12 V G

12
, V G(0 | p2) = p12 V G

21
+ p2

2 V G

22
. (202)

Assuming that p2
1 6= 0 we can eliminate the integral with P11 in Eq.(196) in favor of the integral with P12

which contains the factor x2(y1 − 1) and obtain the generalized function with α1 = α2 = 1, α3 = 1, α4 = 2,
α5 = 2 corresponding to n = 6 − ǫ, i.e.

V G

12
= −ω2 V

1,1|1,2|2
G (n = 6 − ǫ). (203)

Under the same assumption we eliminate the integral with P21 in favor of the integral with P22 which contains
a factor 1 − y1 and obtain a combination of three generalized functions

V G

22
= −ω2

[

V
1,2|1,2|1

G + V
2,1|1,2|1

G + V
1,1|1,2|2

G

] ∣

∣

∣

n=6−ǫ
. (204)

9.4.2 Rank two tensor integrals in the V G family

Tensor integrals become ultraviolet divergent; with qiµ qiν in the numerator the integrals are overall divergent
with (α, γ) or (β, γ) sub-diagram divergent. With q1µ q2ν the function is overall divergent (but sub-diagrams
are convergent).

Henceforth we want to analyze the tensor integrals with two powers of q2 in the numerator: adopting the
usual decomposition in form factors we have that

V G(0|µ, ν ; · · ·) = V G

221
p1µ p1ν + V G

222
p2µ p2ν + V G

223
{p1p2}µν + V G

224
δµν , (205)

with the symmetrized product of Eq.(13). The integral representation for the form factors introduced in
Eq.(205) is given by

V G

22i
= −Γ (1 + ǫ)

∫

DVG R22i;G χ−1−ǫ
G

, i 6= 4, V G

224
= −

1

2
Γ (ǫ)

∫

DVG χ−ǫ
G

,

R221;G = Y
2

2, R222;G = (1 − y1)
2, R223;G = (1 − y1)Y 2, (206)
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where X = (1−x1)/(1−x2) and Y 2 = 1−y2 X. The reduction of the form factors of the V G

22i
family proceeds

as follows: at first we take the trace in both sides of Eq.(205) and obtain

p2
1 V G

221
+ 2 p12 V G

223
+ p2

2 V G

222
+ n V G

224
= −(p2

1 + m2
4)V

G

0
(p1, p1, P, {m}12345)

− 2 p2
1 V G

21
(p1, p1, P, {m}12345) − 2 p12 V G

22
(p1, p1, P, {m}12345) + V E

0
(−p2,−P, {m}5321). (207)

Similarly, contracting Eq.(205) with p2ν , we get additional relations

p12 V G

221
+ p2

2 V G

223
=

1

2

[

(l154 − P 2)V G

21
(p1, p1, P, {m}12345)

+ V E

11
(−p2,−P, {m}5321) − V E

11
(0,−p1, {m}4321)

+ V E

0
(−p2,−P, {m}5321) − V E

0
(0,−p1, {m}4321)

]

,

p2
2 V G

222
+ p12 V G

223
+ V G

224
=

1

2

[

(l154 − P 2)V G

22
(p1, p1, P, {m}12345)

+ V E

12
(−p2,−P, {m}5321) + V E

0
(0,−p1, {m}4321)

]

. (208)

In Eq.(208), where necessary, the momenta have been permuted to bring the integrand in the standard form
of Eq.(119).

Eqs.(207)–(208) can be solved for the form factors with i < 4 when we use one generalized scalar function,

V G

224
=

1

2
ω2 V 1,1|1,1|2(n = 6 − ǫ) . (209)

The q1µ q2ν tensor integral can be expressed in terms of form factors as follows:

V G(µ|ν ; · · ·) = V G

121
p1µ p1ν + V G

122
p2µ p2ν + V G

123
p1µ p2ν + V G

125
p1ν p2µ + V G

124
δµν . (210)

V G(µ|ν ; · · ·) is not symmetric in µ and ν, and we have to distinguish between V G

123
and V G

125
. The integral

representation for the form factors of Eq.(210) is:

V G

12i
= −Γ (1 + ǫ)

∫

DVG R12i;G χ−1−ǫ
G

, i 6= 4, V G

124
= −

1

2
Γ (ǫ)

∫

DVG x2 χ−ǫ
G

,

R121;G = Y 2 (1 − x1 + x2 Y 2) , R122;G = x2 (1 − y1)
2,

R123;G = (1 − y1) (1 − x1 + x2 Y 2), R125;G = (1 − y1)x2 Y 2. (211)

Since the q1 sub-diagram involves three propagators, it is not possible to rewrite V G(µ|ν) in terms of
V G(0|µ, ν). We can, however, express the five form factors of Eq.(210) in terms of scalar function em-
ploying the same technique adopted for the V G

22i
form factors. In fact, taking the trace of both sides of

Eq.(210) one obtains the relation

p2
1 V G

121
+ p12 (V G

123
+ V G

125
) + p2

2 V G

122
+ n V G

124
=

1

2

[

m2
31 V G

0
(p1, p1, P, {m}12345)

+ V G(0|µ, µ; p1, p1, P, {m}12345) + V E

0
(0, p2, {m}2345) + B0(p1, {m}12)B0(p2, {m}45)

]

; (212)

contracting Eq.(210) with p1µ we have

p2
1 V G

121
+ p12 V G

125
+ V G

124
=

1

2

[

− l112 V G

21
(p1, p1, P, {m}12345)

+ V E

22
(p1, P, {m}1345) − V E

0
(0, p2, {m}2345)

]

,

p2
1 V G

123
+ p12 V G

122
=

1

2

[

− l112 V G

22
(p1, p1, P, {m}12345)

+ V E

21
(p1, P, {m}1345) − V E

21
(0, p2, {m}2345)

]

; (213)

35



finally, contracting Eq.(210) with p2ν we have

p2
2 V G

123
+ p12 V G

121
=

1

2

[

(l145 − P 2)V G

11
(p1, p1, P, {m}12345) − V E

11
(0,−p1, {m}4321)

+ V E

12
(−p2,−P, {m}5321) − V E

0
(0,−p1, {m}4321) + V E

0
(−p2,−P, {m}5321)

]

,

p2
2 V G

122
+ p12V

G

125
+ V G

124
=

1

2

[

(l145 − P 2)V G

12
(p1, p1, P, {m}12345)

+ V E

22
(−p2,−P, {m}5321) + V E

0
(−p2,−P, {m}5321)

]

. (214)

Furthermore we have

V G

124
=

1

2
ω2 V

1,1|1,1|2
G

∣

∣

∣

n=6−ǫ
. (215)

The system composed by Eqs.(212)–(214) gives the form factors with i 6= 4.
It is now necessary to analyze the form factors of the V G

11i
family, which are defined through the relation

V G(µ, ν|0 ; · · ·) = V G

111
p1µ p1ν + V G

112
p2µ p2ν + V G

113
{p1p2}µν + V G

114
δµν , (216)

with {p1p2} defined in Eq.(13). The integral representation for these form factors can be obtained with
standard techniques:

V G

11i
= −Γ (1 + ǫ)

∫

DVG R11i;G χ−1−ǫ
G

, i 6= 4 ,

R111;G = (1 − x1 + x2 Y )2, R112;G = x2
2 (1 − y1)

2 R113;G = (1 − y1)x2 (1 − x1 + x2 Y 2),

V G

114
= −

1

2
Γ (ǫ)

∫

DVG

x2

y2
(1 − x2 + x2 y2)χ−ǫ

G
. (217)

In order to reduce the form factors to linear combination of scalar functions, we start by taking the trace in
both sides of Eq.(216) so that we obtain

p2
1 V G

111
+ 2 p12 V G

113
+ p2

2 V G

112
+ n V G

114
= −m2

1 V G

0
(p1, p1, P, {m}12345) + V E

0
(0, p2, {m}2345). (218)

Contracting Eq.(216) with p1µ we have additional relations,

p2
1 V G

111
+ p12V

G

113
+ V G

114
=

1

2

[

− l112 V G

11
(p1, p1, P, {m}12345)

+ V E

12
(p1, P, {m}1345) + V E

0
(0, p2, {m}2345)

]

,

p2
1 V G

113
+ p12 V G

112
=

1

2

[

− l112 V G

12
(p1, p1, P, {m}12345)

+ V E

11
(p1, P, {m}1345) − V E

11
(0, p2, {m}2345)

]

. (219)

It is not possible to obtain more equations by multiplying both sides of Eq.(210) by p2µ, since the scalar
product q1 · p2 is irreducible. Eqs.(218)–(219) give the form factors with i 6= 2 when we introduce one
generalized scalar function,

V G

112
= 4 ω4 V

1,1|1,3|3
G (n = 8 − ǫ) . (220)

There are other equivalent solutions. Results for this family are summarized in Appendix B.4. V G

0
≡ V 221

0

is discussed in Sect. 7.1 of III (see comment at the end of Section 9.1.2), evaluation of form factors in
Section 11.3.
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9.5 The V K-family (α = 2, β = 3, γ = 1)

Next we consider the scalar diagram in the V K-family of Fig. 10, which is overall ultraviolet convergent
(with all sub-diagrams convergent) and which is representable as

π4 V K

0
(P, p1, P, {m}123456) = µ2ǫ

∫

dnq1

∫

dnq2
1

[1][2]K[3]K[4]K[5]K[6]K
, (221)

with propagators

[1] ≡ q2
1 + m2

1, [2]K ≡ (q1 + P )2 + m2
2, [3]K ≡ (q1 − q2)

2 + m2
3,

[4]K ≡ q2
2 + m2

4, [5]K ≡ (q2 + p1)
2 + m2

5, [6]K ≡ (q2 + P )2 + m2
6. (222)

−P

p1

p2

1

2

3

4

5

6

V K

Figure 10: The irreducible two-loop vertex diagrams V K . External momenta flow inwards. Internal masses are
enumerated according to Eq.(222).

9.5.1 Vector integrals in the V K family

The form factors for the vector integrals are defined by

V K(µ | 0 ; P, p1, P, {m}123456) =

2
∑

i=1

V K

1i
(P, p1, P, {m}123456) piµ,

V K(0 |µ ; P, p1, P, {m}123456) =

2
∑

i=1

V K

2i
(P, p1, P, {m}123456) piµ, (223)

where the form factors V K

ij
(k, p, k, {m}a···f ) refer to the basis pµ and (k − p)µ. Their explicit expression is

V K

ij
= −Γ (2 + ǫ)

∫

DVK Pij;K χ−2−ǫ
K

,

∫

DVK = ωǫ

∫

dS2({x})

∫

dS3({y})
[

x2 (1 − x2)
]−1−ǫ/2

y
ǫ/2
3 ,

P00;K = 1, P11;K = −H2, P12;K = −H1, P21;K = Y2, P22;K = Y1, (224)

where ω is defined in Eq.(15), and the quantities Yi and Hi are given in Eq.(11). The polynomial χ
K

is given
by

χ
K

= −F (y2 − X y3 , y1 − X y3) + l265 y1 + (P 2 − l245) y2 − (2 X P 2 − m2
xx + m2

4) y3 + m2
6, (225)
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with F defined in Eq.(12) and

m2
xx =

−P 2x2
1 + x1(P

2 + m2
12) + x2m

2
312

x2(1 − x2)
,

with X = (1 − x1)/(1 − x2). The generalized function in this family is

V
α1,α2|α4,α5,α6|α3

K (n =
6

∑

i=1

αi − 2 − ǫ) = π−4 (µ2)4−n

∫

dnq1 dnq2

6
∏

i=1

[i]−αi
K

= −
Γ (2 + ǫ)

∏6
i=1 Γ (αi)

ω6−
∑

6
j=1 αj+ǫ

∫

dS2({x})

∫

dS3({y}) (1 − x1)
ρ1

× (x1 − x2)
ρ2 xρ3

2 (1 − x2)
ρ4 (1 − y1)

ρ5 (y1 − y2)
ρ6 (y2 − y3)

ρ7 yρ8

3 χ−2−ǫ
K

, (226)

where [1]K ≡ [1], ω is defined in Eq.(15) and the powers ρi are

ρ1 = α2 − 1, ρ2 = α1 − 1, ρ3 =
1

2
(
∑

α − 2 α1 − 2 α2 − 4 − ǫ),

ρ4 =
1

2
(
∑

α − 2 α1 − 2 α2 − 2 α3 − 2 − ǫ), ρ5 = α6 − 1, ρ6 = α5 − 1,

ρ7 = α4 − 1, ρ8 =
1

2
(ǫ −

∑

α + 2 α1 + 2 α2 + 2 α3). (227)

There is partial reducibility with respect to q1 and complete reducibility with respect to q2. We obtain

V K(P |0; P, p1, P, {m}123456) = −
1

2

[

lP12V
K

0
(P, p1, P, {m}123456)−V I

0
(p1, P, {m}13456)

+ V I

0
(−p2,−P, {m}23654)

]

,

V K(0|p1; P, p1, P, {m}123456) =−
1

2

[

l145V
K

0
(P, p1, P, {m}123456)+V G

0
(P, P, p1, {m}12365)

− V G

0
(P, P, 0, {m}12364)

]

,

V K(0|P ; P, p1, P, {m}123456) = −
1

2

[

lP46V
K

0
(P, p1, P, {m}123456) + V G

0
(P, P, p1, {m}12365)

− V G

0
(−P,−P,−p2, {m}21345)

]

. (228)

We can write

V K(P | 0 ; P, p1, P, {m}123456) = p1 · P V K

11
+ p2 · P

[

V K

11
− IR;K

]

, (229)

IR;K = Γ (2 + ǫ)

∫

DVK x2 (y1 − y2)χ−2−ǫ
K

= ω2 V
1,1|1,2,1|2

K (n = 6 − ǫ), (230)

which gives the reduction of the 11-component. Reduction of the 12-component follows from

V K

12
= V K

11
− IR;K. (231)

A similar argument holds for the 2i components with the same IR;K, although the reduction of the V K

2i

components can also be obtained solving the system composed by the last two equations of Eq.(228).

9.5.2 Rank two tensor integrals in the V K family

Only the q1µ q1ν tensor integral has an ultraviolet divergent (α, γ) sub-diagram.
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Henceforth we consider the q2µ q2ν tensor integral: we introduce the form factors of the V K

22i
family

through the relation

V K(0|µ, ν ; · · ·) = V K

221
p1µ p1ν + V K

222
p2µ p2ν + V K

223
{p1 p2}µν + V K

224
δµν , (232)

with the symmetrized product of Eq.(13). Their integral representation is given by

V K

22i
= −Γ (2 + ǫ)

∫

DVKR22i;K χ−2−ǫ
K

, i 6= 4, V K

224
= −

1

2
Γ (1 + ǫ)

∫

DVK χ−1−ǫ
K

,

R221;K = Y 2
2 , R222;K = Y 2

1 , R223;K = Y1 Y2. (233)

We want to express the V K

22i
form factors as linear combinations of scalar functions. Taking the trace of both

sides of Eq.(232) one obtains

p2
1 V K

221
+ 2 p12 V K

223
+ p2

2 V K

222
+ n V K

224
= V G

0
(P, P, p1, {m}12365) − m2

4 V K

0
(P, p1, P, {m}123456). (234)

Contracting both sides of Eq.(232) with p2µ we get

p12 V K

221
+ p2

2 V K

223
=

1

2

[

(l165 − P 2)V K

21
(P, p1, P, {m}123456) − V G

21
(P, P, 0, {m}12364)

− V G

21
(−P,−P,−p2, {m}21345) + V G

22
(P, P, 0, {m}12364)

+ V G

22
(−P,−P,−p2, {m}21345) − V G

0
(−P,−P,−p2, {m}21345)

]

,

p2
2 V K

222
+ p12 V K

223
+ V K

224
=

1

2

[

(l165 − P 2)V K

22
(p1, p1, P, {m}123456) − V G

21
(P, P, 0, {m}12364)

− V G

21
(−P,−P,−p2, {m}21345) + V G

22
(P, P, 0, {m}12364)

− V G

0
(−P,−P,−p2, {m}21345)

]

. (235)

Once again, one should be particularly careful in shifting the integration momenta in order to bring the
integrand of the V G functions in the chosen standard form:

µ2ǫ

π4

∫

dnr1d
nr2

riµ

DaDbDcDdDe
≡ V G

i1
(kb, kb, ke, {m}abcde) kbµ + V G

i2
(kb, kb, ke, {m}abcde) (ke − kb)µ,(236)

Da = r2
1 + m2

a , Db = (r1 + kb)
2 + m2

b , Dc = (r2 − r2)
2 + m2

c ,
Dd = (r1 + kb)

2 + m2
d , De = (r2 + ke)

2 + m2
e .

Contracting both sides of Eq.(232) with p1µ we get

p12 V K

222
+ p2

1 V K

223
=

1

2

[

− l145 V K

22
(P, p1, P, {m}123456) + V G

21
(P, P, 0, {m}12364)

− V G

22
(P, P, 0, {m}12364)

]

,

p2
1 V K

221
+ p12 V K

223
+ V K

224
=

1

2

[

− l145 V K

21
(P, p1, P, {m}123456) − V G

21
(P, P, p1, {m}12365)

+ V G

21
(P, P, 0, {m}12364) − V G

22
(P, P, 0, {m}12364)

]

. (237)

A solution of Eqs.(234)–(237) give the form factors in the 22 group. We can now analyze the q1µ q2ν tensor
integrals. As for the V G case, this tensor integral is not symmetric in µν, so that we need to introduce five
form factors:

V K(µ|ν ; · · ·) = V K

121
p1µ p1ν + V K

122
p2µ p2ν + V K

123
p1µ p2ν + V K

125
p1ν p2µ + V K

124
δµν . (238)
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The integral representation of these form factors is the following:

V K

12i
= −Γ (2 + ǫ)

∫

DVK R12i;K χ−2−ǫ
K

, i 6= 4, V K

124
= −

1

2
Γ (1 + ǫ)

∫

DVK x2 χ−1−ǫ
K

,

R121;K = −Y2 H2, R122;K = −Y1 H1 , R123;K = −Y1 H2 , R125;K = −Y2 H1. (239)

Employing the usual procedure we can reduce the form factors. Contracting Eq.(238) with δµν , p1ν and p2ν

we obtain

p2
1 V K

121
+ p12 (V K

123
+ V K

125
) + p2

2 V K

122
+ n V K

124
= −

1

2

[

m2
134 V K

0
(P, p1, P, {m}123456)

− V G

0
(P, P, p1, {m}12365) − V I

0
(−p2,−P, {m}23654) − B0(P, {m}12)C0(p1, p2, {m}456)

]

, (240)

p2
1 V K

121
+ p12 V K

123
+ V K

124
=

1

2

[

− l145 V K

11
(P, p1, P, {m}123456) + V G

11
(P, P, 0, {m}12364)

− V G

11
(P, P, p1, {m}12365) − V G

12
(P, P, 0, {m}12364)

]

,

p2
1 V K

125
+ p12 V K

122
=

1

2

[

− l145 V K

12
(P, p1, P, {m}123456) + V G

11
(P, P, 0, {m}12364)

− V G

11
(P, P, p1, {m}12365) − V G

12
(P, P, 0, {m}12364)

+ V G

12
(P, P, p1, {m}12365)

]

, (241)

p2
2 V K

122
+ p12V

K

125
+ V K

124
=

1

2

[

(l165 − P 2)V K

12
(P, p1, P, {m}123456) + V G

12
(P, P, 0, {m}12364)

− V G

11
(P, P, 0, {m}12364) − V G

11
(−P,−P,−p2, {m}21345)

− V G

0
(−P,−P,−p2, {m}21345)

]

,

p2
2 V K

123
+ p12 V K

121
=

1

2

[

(l165 − P 2)V K

11
(P, p1, P, {m}123456) − V G

11
(P, P, 0, {m}12364)

− V G

11
(−P,−P,−p2, {m}21345) + V G

12
(P, P, 0, {m}12364)

+ V G

12
(−P,−P,−p2, {m}21345) − V G

0
(−P,−P,−p2, {m}21345)

]

. (242)

The solution of Eqs.(240)–(242) gives the form factors in the 12 group.
Finally, we consider the q1µ q1ν tensor integral for which we introduce the form factors V K

11i
:

V K(µ, ν|0 ; · · ·) = V K

111
p1µ p1ν + V K

112
p2µ p2ν + V K

113
{p1p2}µν + V K

114
δµν , (243)

where the symmetrized product is given in Eq.(13). Their integral representation is given by

V K

11i
= −Γ (2 + ǫ)

∫

DVK R11i;K χ−2−ǫ
K

, i 6= 4 ,

R111;K = H2
2 , R112;K = H2

1 , R113;K = H1 H2,

V K

114
= −

1

2
Γ (1 + ǫ)

∫

DVK

[x2 (1 − x2)

y3
+ x2

2

]

χ−1−ǫ
K

. (244)

H1 and H2 were defined in Eq.(11). Contracting both sides of Eq.(243) first with δµν and then with Pν , it
is possible to obtain the following set of three equations:

p2
1 V K

111
+ 2 p12 V K

113
+ p2

2 V K

122
+ n V K

124
= −m2

1 V K

0
(P, p1, P, {m}123456) + V I

0
(−p2,−P, {m}23654), (245)
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p1 · P V K

111
+ p2 · PV K

113
+ V K

114
=

1

2

[

− lP12 V K

11
(P, p1, P, {m}123456) + V I

11
(p1, P, {m}13456)

+ V I

12
(−P,−p2, {m}23645) + V I

0
(−P,−p2, {m}23645)

]

,

p1 · P V K

113
+ p2 · P V K

112
+ V K

114
=

1

2

[

− lP12 V K

12
(P, p1, P, {m}123456) + V I

12
(p1, P, {m}13456)

+ V I

11
(−P,−p2, {m}23645) + V I

0
(−P,−p2, {m}23645)

]

. (246)

We have then three equations and four unknown form factors, so that we should look for relations between
form factors and generalized scalar function; for example we have that

V K

111
−2V K

113
+V K

112
= −Γ (2 + ǫ)

∫

DVK x2
2(y1 − y2)

2 χ−2−ǫ
K

= 4ω4V
1,1|1,3,1|3

K

∣

∣

∣

n=8−ǫ
. (247)

Results for this family are summarized in Appendix B.5. V K

0
≡ V 231

0
is discussed in Sects. 9.1 - 9.2 of III

(see comment at the end of Section 9.1.2), evaluation of form factors in Section 11.4.

9.6 The V H-family (α = 2, β = 2, γ = 2)

Finally, we consider the non-planar diagram of the V H-family, given in Fig. 11, which is representable as

π4 V H

0
(−p2, p1,−p2,−p1, {m}123456) = µ2ǫ

∫

dnq1

∫

dnq2
1

[1][2]H[3]H[4]H[5]H[6]H
, (248)

with propagators

[1] ≡ q2
1 + m2

1, [2]H ≡ (q1 − p2)
2 + m2

2, [3]H ≡ (q1 − q2 + p1)
2 + m2

3,

[4]H ≡ (q1 − q2 − p2)
2 + m2

4, [5]H ≡ q2
2 + m2

5, [6]H ≡ (q2 − p1)
2 + m2

6. (249)

The basis for the form factors V H

i···j(k, p, k,−p, {m}a···f ) is chosen to be pµ and −kµ. All members of this

−P

p1

p2

2

1

4

3

6

5

V H

Figure 11: The irreducible two-loop vertex diagrams V H . External momenta flow inwards. Internal masses are
enumerated according to Eq.(249).

family, including rank-two tensors, are overall ultraviolet convergent with all sub-diagrams convergent.
Adopting the parametrization presented in Sect. 10.2 of III, the integral representation for the scalar

integral of the V H family, with arbitrary powers for the propagators, is

V
α1,α2|α5,α6|α3,α4

H (n =
6

∑

i=1

αi − 2 − ǫ) = π−4 (µ2)4−n

∫

dnq1 dnq2

6
∏

i=1

[i]−αi
H

= −
Γ (2 + ǫ)

∏6
i=1 Γ (αi)

ω6−
∑

6
j=1 αj+ǫ

∫

dC2(x, y)

∫

dC3({z})

× (1 − z1)
ρ1 zρ2

1 (1 − z2)
ρ3 zρ4

2 (1 − z3)
ρ5 zρ6

3 (1 − y)ρ7 yρ8 (1 − x)ρ9 xρ10 χ−2−ǫ
H

, (250)
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where [1]H ≡ [1], where ω is defined in Eq.(15) and the powers ρi (i = 1, . . . , 10) are

ρ1 = α1 − 1, ρ2 = α2 − 1, ρ3 = α4 − 1, ρ4 = α3 − 1,

ρ5 = α5 − 1, ρ6 = α6 − 1, ρ7 = α5 + α6 − 1, ρ8 =
1

2
(ǫ −

∑

α + 2 α1 + 2 α2 + 2 α3 + 2 α4),

ρ9 = −
1

2
(4 + ǫ −

∑

α + 2 α1 + 2 α2), ρ10 = −
1

2
(4 + ǫ −

∑

α + 2 α3 + 2 α4). (251)

The polynomial χ
H

is given by χ
H

= −Q2 y2 + (M2
x − M2 + Q2) y + M2 where:

Qµ = K1µ − K2µ − K3µ, M2 = R2
3 − K2

3 , M2
x =

x (R2
1 − K2

1 ) + (1 − x) (R2
2 − K2

2 )

x (1 − x)
,

R2
1 = l212 z1 + m2

1, R2
2 = z2 (p2

1 + m2
3) + (1 − z2) (p2

2 + m2
4), R2

3 = l156 z3 + m2
5,

K1µ = −z1 p2µ, K2µ = z2 p1µ − (1 − z2) p2µ, K3µ = −z3 p1µ.

9.6.1 Vector integrals in the V H family

The form factors for the vector integrals are defined by the relations

V H(µ | 0 ; −p2, p1,−p2,−p1, {m}123456) =
2

∑

i=1

V H

1i
(−p2, p1,−p2,−p1, {m}123456) piµ,

V H(0 |µ ; −p2, p1,−p2,−p1, {m}123456) =
2

∑

i=1

V H

2i
(−p2, p1,−p2,−p1, {m}123456) piµ. (252)

Their explicit expression, in terms of integrals over the Feynman parameters, is

V H

ij
= −Γ (2 + ǫ)

∫

DVH Pij;H χ−2−ǫ
H

,

∫

DVH = ωǫ

∫

dC5(x, y, {z})
[

x (1 − x)
]−1−ǫ/2

y1+ǫ/2 (1 − y),

P00;H = 1, P11;H = −(z2 − z3) (1 − x) (1 − y), P12;H = (1 − z1 − z2) (1 − x) (1 − y),

P21;H = y (z2 − z3), P22;H = −y (1 − z1 − z2), (253)

where ω is defined in Eq.(15) and P00 is the factor that arises in the calculation of the scalar integral. The
form factors for the vector integrals can be reduced as follows: first it is possible to simplify the scalar
products q1 · p2 and q2 · p1, respectively, obtaining the relations

V H(p2 | 0 ; −p2, p1,−p2,−p1, {m}123456) =
1

2

[

l212 V H

0
(−p2, p1,−p2,−p1, {m}123456)

− V G

0
(p1, p1,−p2, {m}56134)

+ V G

0
(−P,−P,−p2, {m}34256)

]

,

V H(0 | p1 ; −p2, p1,−p2,−p1, {m}123456) =
1

2

[

l156 V H

0
(−p2, p1,−p2,−p1, {m}123456)

+ V G

0
(p2, p2,−p1, {m}21634)

− V G

0
(p2, p2,−p1, {m}12543)

]

. (254)

Since there are no other reducible scalar products we must find relations that link the form factors of the
vector integrals to a linear combination of generalized scalar functions. The following identities hold:

V H

22
(−p2, p1,−p2,−p1, {m}123456) = ω2

[

V
1,2|1,1|2,1

H − V
2+1|1,1|1,2

H

] ∣

∣

∣

n=6−ǫ
,

V H

11
(−p2, p1,−p2,−p1, {m}123456) = ω2

[

V
1,1|1,2|1,2

H − V
1,1|2,1|2,1

H

] ∣

∣

∣

n=6−ǫ
. (255)
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9.6.2 Rank two tensor integrals in the V H family

It is then necessary to consider the tensor integrals that have two momenta of integration with free Lorentz
indices. We start from the the V H(0|µ, ν) integral and introduce the relevant form factors through the
relation

V H(0|µ, ν ; · · ·) = V H

221
p1µ p1ν + V H

222
p2µ p2ν + V H

223
{p1p2}µν + V H

224
δµν . (256)

The integral representation of these form factors is given by

V H

22i
= −Γ (2 + ǫ)

∫

DVH y2 R22i;H χ−2−ǫ
H

, i 6= 4, V H

224
= −

1

2
Γ (1 + ǫ)

∫

DVH χ−1−ǫ
H

,

R221;H = (z2 − z3)
2, R222;H = (1 − z1 − z2)

2 , R223;H = − (1 − z1 − z2) (z2 − z3) . (257)

Multiplying Eq.(256) by δµν and p1µ, respectively, we obtain the relations

p2
1V

H

221
+ p2

2V
H

222
+2p12V

H

223
+nV H

224
= V G

0
(p2, p2,−p1, {m}21634) − m2

5 V H

0
(−p2, p1,−p2,−p1, {m}123456) ,

p2
1 V H

221
+ p12 V H

223
+ V H

224
=

1

2

[

l156 V H

21
(−p2, p1,−p2,−p1, {m}123456) − V G

12
(p2, p2,−p1, {m}21634)

− V G

12
(−p2,−p2, p1, {m}12543) + V G

22
(p2, p2,−p1, {m}21634)

+ V G

22
(−p2,−p2, p1, {m}12543) + V G

0
(p2, p2,−p1, {m}21634)

]

,

p2
1 V H

223
+ p12 V H

222
=

1

2

[

l156 V H

22
(−p2, p1,−p2,−p1, {m}123456) + V G

11
(p2, p2,−p1, {m}21634)

+ V G

11
(−p2,−p2, p1, {m}12543) − V G

12
(p2, p2,−p1, {m}21634)

− V G

12
(−p2,−p2, p1, {m}12543) − V G

21
(p2, p2,−p1, {m}21634)

− V G

21
(−p2,−p2, p1, {m}12543) + V G

22
(p2, p2,−p1, {m}21634)

+ V G

22
(−p2,−p2, p1, {m}12543)

]

. (258)

We then have a set of three equations that can be solved for i 6= 4 when we express one of the form factors
in terms of a generalized scalar function; for example we have that

V H

224
=

ω2

2

[

V
1,1|1,1|1,2

H + V
1,1|1,1|2,1

H + V
2,1|1,1|1,1

H + V
1,2|1,1|1,1

H

] ∣

∣

∣

n=6−ǫ
. (259)

We can proceed in a completely analogous way for the q1µ q1ν tensor integral. The relevant form factors are
defined through the relation

V H(µ, ν |0; · · ·) = V H

111
p1µ p1ν + V H

112
p2µ p2ν + V H

113
{p1p2}µν + V H

114
δµν . (260)

The integral representation of these form factors is given by

V H

11i
= −Γ (2 + ǫ)

∫

DVH (1 − x)2 (1 − y)2 R11i;H χ−2−ǫ
H

, i 6= 4,

V H

114
= −

1

2
Γ (1 + ǫ)

∫

DVH R114;H χ−1−ǫ
H

,

R11i;H = R22i;H , R114;H = (1 − x) (1 − x +
x

y
) . (261)

Contracting Eq.(260) by δµν and p2µ, respectively, we obtain the relations

p2
1 V H

111
+ p2

2 V H

112
+ 2 p12 V H

113
+ n V H

114
= V G

0
(−P,−P,−p2, {m}34256)

− m2
1 V H

0
(−p2, p1,−p2,−p1, {m}123456) , (262)
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p2
2 V H

112
+ p12 V H

113
+ V H

114
=

1

2

[

l212 V H

12
(−p2, p1,−p2,−p1, {m}123456) − V G

11
(−P,−P,−p2, {m}34256)

+ V G

21
(−P,−P,−p2, {m}34256) + V G

0
(−P,−P,−p2, {m}34256)

+ V G

22
(p1, p1,−p2, {m}56234) − V G

12
(p1, p1,−p2, {m}56234)

]

,

p2
2 V H

113
+ p12 V H

111
=

1

2

[

l212 V H

11
(−p2, p1,−p2,−p1, {m}123456) + V G

11
(p1, p1,−p2, {m}56234)

− V G

21
(p1, p1,−p2, {m}56234) + V G

22
(p1, p1,−p2, {m}56234)

− V G

12
(p1, p1,−p2, {m}56234)

]

. (263)

Once again, we can rewrite one of the form factors of the V H

11i
family as a linear combination of generalized

scalar functions and solve the system for the others: or instance

V H

111
= 4 ω4

[

V
1,1|3,1|3,1

H + V
1,1|1,3|1,3

H −
1

2
V

1,1|2,2|2,2
H

] ∣

∣

∣

n=8−ǫ
or

V K

114
=

1

2
ω2

[

V
1,1|1,2|1,1

H + V
1,1|2,1|1,1

H + V
1,1|1,1|1,2

H + V
1,1|1,1|2,1

H

] ∣

∣

∣

n=6−ǫ
. (264)

The q1µ q2ν tensor integrals are symmetric in the exchange of µ and ν; this fact can be understood noticing
that the integral with respect to q1 is proportional to a1 qµ

2 +a2 Qµ, where a1 and a2 are scalar factors and Qµ

is a linear combination of the external momenta. Therefore, after the q1 integration, the integrand will split
into a part proportional to qµ

2 qν
2 , obviously symmetric with respect to µ ↔ ν, and into a part proportional

to qν
2Qµ; also the latter is symmetric since the vector integral with qν

2 in the numerator is proportional to
Qν .

To describe their tensor structure it is necessary to introduce four form factors:

V H(µ|ν; · · ·) = V H

121
p1µ p1ν + V H

122
p2µ p2ν + V H

123
{p1 p2}µν + V H

124
δµν , (265)

with {p1p2} given in Eq.(13) and with corresponding integral representations given by

V H

12i
= −Γ (2 + ǫ)

∫

DVH y (1 − x) (1 − y)R12i;H χ−2−ǫ
H

, i 6= 4 ,

V H

124
= −

1

2
Γ (1 + ǫ)

∫

DVH (1 − x)χ−1−ǫ
H

, R12i;H = −R22i;H. (266)

Contracting both sides of Eq.(265) with p1ν and p2µ we obtain the following set of four equations:

p2
1 V H

121
+ p12 V H

123
+ V H

124
=

1

2

[

l156 V H

11
(−p2, p1,−p2,−p1, {m}123456)

− V G

12
(p2, p2,−p1, {m}21634) − V G

12
(−p2,−p2, p1, {m}12543)

]

,

p2
1 V H

123
+ p12 V H

122
=

1

2

[

l156 V H

12
(−p2, p1,−p2,−p1, {m}123456) + V G

11
(p2, p2,−p1, {m}21634)

+ V G

11
(−p2,−p2, p1, {m}12543) − V G

12
(p2, p2,−p1, {m}21634)

− V G

12
(−p2,−p2, p1, {m}12543) + V G

0
(p2, p2,−p1, {m}21634)

]

,

p2
2 V H

123
+ p12 V H

121
=

1

2

[

l212 V H

21
(−p2, p1,−p2,−p1, {m}123456) + V G

11
(p1, p1,−p2, {m}56234)

+ V G

0
(−P,−P,−p2, {m}34256) − V G

12
(p1, p1,−p2, {m}56234)

]

,

p2
2 V H

122
+ p12 V H

123
+ V H

124
=

1

2

[

l212 V H

22
(−p2, p1,−p2,−p1, {m}123456) + V G

21
(−P,−P,−p2, {m}34256)

+ V G

0
(−P,−P,−p2, {m}34256) − V G

12
(p1, p1,−p2, {m}56234)

]

.

(267)
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Note that the form factor V H

124
could be expressed in terms of generalized scalar functions; indeed we have

V H

124
=

ω2

2

[

V
1,1|1,1|1,2

H (n = 6 − ǫ) + V
1,1|1,1|2,1

H (n = 6 − ǫ)
]

, (268)

while the remaining ones can be obtained solving the corresponding system of equations. Results for this
family are summarized in Appendix B.6. V H

0
≡ V 222

0
is discussed in Sect. 10.4 of III (see comment at the

end of Section 9.1.2), evaluation of form factors in Section 11.4.

9.7 Integral representation for tensor integrals of rank three

Our aim in this work was to derive all the ingredients needed for the two-loop renormalization of the
standard model (or of any other renormalizable theory) and to discuss all the tensor integrals that are
relevant for the calculation of physical observables related to processes of the type V (S) → ff . For the
classes of diagrams involving at least one four-point vertex, it is sufficient to analyze tensor integral that
include up to two integration momenta in the numerator. However, for the remaining classes, V M , V K, and
V H it is necessary to consider in addition tensor integrals that include up to three momenta. As specified in
the Introduction, we make use of the following shorthand notation: x = 1 − x, xi = 1 − xi, yi = 1 − yi, etc.

9.7.1 V M family

For general definitions see Section 9.3. We start by considering the integral with three uncontracted q2

momenta in the numerator:

V M(0|α, β, γ; · · ·) = V M

2221
{δ p1}αβγ + V M

2222
{δ p2}αβγ + V M

2223
{p1p1p2}αβγ + V M

2224
{p2p2p1}αβγ

+ V M

2225
p1α p1β p1γ + V M

2226
p2α p2β p2γ , (269)

where we used the definitions of Eq.(13). The various form factors have the following integrals representations
(with integration measure defined in Eq.(177)):

V M

222i
= −Γ (2 + ǫ)

∫

DVM P222i;M χ−2−ǫ
M

, i > 2,

P2223;M = −z2
1 z2, P2224;M = −z1 z2

2 , P2225;M = −z3
1 , P2226;M = −z3

2 ,

V M

222i
= −

Γ (1 + ǫ)

2

∫

DVM P222i;M χ−1−ǫ
M

, i = 1, 2, P222i;M = −zi . (270)

χ
M

≡ χ
I

is given in Eq.(157). For the tensor integral with three uncontracted q1 momenta in the numerator
we use a decomposition identical to the one of Eq.(269). The integral representation for the corresponding
form factors is given by

V M

111i
= −Γ (2 + ǫ)

∫

DVMP111i;M χ−2−ǫ
M

, P111i;M = x3 P222i;M , i > 2,

V M

222i
= −

Γ (1 + ǫ)

2

∫

DVMx2

[

P111i;M +
R111i;M

2 − ǫ
+ 2

1 + ǫ

2 − ǫ
χ−1

M
Q111i;M

]

χ−1−ǫ
M

, i = 1, 2,

Q111i;M = xzi[F (z1, z2) + m2
x], R111i;M = (6 − ǫ)xzi, P111i;M = −x zi. (271)

Employing again definitions analogous to those of Eq.(269), the form factors for the V M

122i
family are written

as

V M

122i
= −Γ (2 + ǫ)

∫

DVMP122i;M χ−2−ǫ
M

, P122i;M = xP222i;M , i > 2,

V M

122i
= −

Γ (1 + ǫ)

2

∫

DVMP122i;M χ−1−ǫ
M

, P122i;M = xP222i;M i = 1, 2 . (272)
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Since the tensor integral V M(α, β|γ) is only symmetric with respect to the exchange of the first two indices,
a new decomposition in form factors is introduced:

V M(α, β|γ; · · ·) = V M

1121
{δ p1}αβγ + V M

1122
{δ p2}αβγ + V M

1123
{p1p1p2}αβγ + V M

1124
{p2p2p1}αβγ

+ V M

1125
p1α p1β p1γ + V M

1126
p2α p2β p2γ + V M

1127
{δ p1}αβ | γ + V M

1128
{δ p2}αβ | γ , (273)

where all the symmetrized products were defined in Eq.(13). The integral representation for the form factors
in Eq.(273) is as follows:

V M

112i
= −Γ (2 + ǫ)

∫

DVM P112i;M χ−2−ǫ
M

, P112i;M = x2 P222i;M , i 6= 1, 2, 7, 8,

V M

112i
= −

Γ (1 + ǫ)

2

∫

DVM x

[

P112i;M +
R112i;M

2 − ǫ
+ 2

1 + ǫ

2 − ǫ
χ−1

M
Q112i;M

]

χ−1−ǫ
M

i = 1, 2,

Q112i;M = x zi [F (z1, z2) + m2
x], R112i;M = (6 − ǫ)x zi, P112i;M = −x zi ,

V M

112i
= −

Γ (1 + ǫ)

2 − ǫ

∫

DVM xxχ−1−ǫ
M

[1

2
R112i;M + (1 + ǫ)χ−1

M
Q112i;M

]

, i = 7, 8,

Q1127;M = − z1 [F (z1, z2) + m2
x], Q1128;M = − z2 [F (z1, z2) + m2

x],

R1127;M = −(6 − ǫ) z1, R1128;M = −(6 − ǫ) z2. (274)

It is straightforward to show that the form factors V M

1113
, V M

1114
, V M

1115
, and V M

1116
, are generalized integrals of

the type V
α1|α2,α3,α4|α5

M :

V M

1115
= −36 ω6 V

1|2,4,1|4
M (n = 10 − ǫ) − V M

1116
+ 3 V M

1114
− 3 V M

1113
,

V M

1113
= −12 ω6 V

1|2,3,2|4
M (n = 10 − ǫ) − V M

1116
− 2 V M

1114
,

V M

1114
= −12 ω6 V

1|2,2,3|4
M (n = 10 − ǫ) + V M

1116
, V M

1116
= −36 ω6 V

1|2,1,4|4
M (n = 10 − ǫ) . (275)

9.7.2 V K family

For general definitions see Section 9.5. We start by considering the tensor integrals V (µ, ν, α|0; · · ·) and
V (0|µ, ν, α; · · ·) which are obviously totally symmetric and for which we can then adopt the same decompo-
sition in form factors already presented in Eq.(269). Employing the standard procedure, one finds that

V K

222i
= −Γ (2 + ǫ)

∫

DVK R222i;K χ−2−ǫ
K

, i > 2 ,

R2223;K = Y1 Y 2
2 , R2224;K = Y 2

1 Y2 , R2225;K = Y 3
2 , R2226;K = Y 3

1 ,

V K

222i
= −

Γ (1 + ǫ)

2

∫

DVK R222i;K χ−1−ǫ
K

, i = 1, 2 ,

R2221;K = Y2 , R2222;K = Y1 , (276)

where we recall that the quantities Y1, Y2 (see Eq.(11)) are given by Yi = −1 + yi − y3 X , with X =
(1 − x1)/(1 − x2). The integration measure is defined in Eq.(224). For the V K

111i
form factors we have

V K

111i
= −Γ (2 + ǫ)

∫

DVK R111i;K χ−2−ǫ
K

, i > 2 ,

R1113;K = −H1 H2
2 , R1114;K = −H2

1 H2, R1115;K = −H3
2 , R1116;K = −H3

1 ,

V K

111i
= −

Γ (1 + ǫ)

2

∫

DVK x2

(

x2 R111i;K − Q111i;K

)

χ−1−ǫ
K

, i = 1, 2 ,

R1111;K = −H2, R1112;K = −H1, Q1111;K =
x2

y3
H2, Q1112;K =

x2

y3
H1. (277)
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The quantities H1 and H2 were introduced in Eq.(11). Consider now the integral V K(µ|ν, α); in this case
we have symmetry in the last two indices and a larger number of form factors; with symmetrized products
defined in Eq.(13) we have

V K(µ|ν, α; · · ·) = V K

1221
{δ p1}να |µ + V K

1222
{δ p2}να |µ + V K

1223
δναp1µ + V K

1224
δναp2µ

+ V K

1225
p1α p1µ p1ν + V K

1226
p2α p2µ p2ν + V K

1227
{p1 p1 p2}αν |µ

+ V K

1228
{p2 p2 p1}αν |µ + V K

1229
p1α p1ν p2µ + V K

12210
p1µ p2ν p2α . (278)

The integral representations of the form factors of Eq.(278) are given by

V K

122i
= −Γ (2 + ǫ)

∫

DVK R122i;K χ−2−ǫ
K

, i > 4 ,

R1225;K = −Y 2
2 H2, R1226;K = −Y 2

1 H1, R1227;K = −Y1 Y2 H2,

R1228;K = −Y1 Y2 H1, R1229;K = −Y 2
2 H1, R12210;K = −Y 2

1 H2,

V K

122i
= −

Γ (1 + ǫ)

2

∫

DVK R122i;K χ−1−ǫ
K

, i = 1, · · · 4 ,

R1221;K = 1 − x1 − H2, R1222;K = 1 − x1 − H1, R1223;K = −H2, R1224;K = −H1. (279)

The integral V K(µ, ν|α; · · ·) is symmetric in the first two indexes; using the definitions of Eq.(13) we obtain

V K(µ, ν|α; · · ·) = V K

1121
{δ p1}µν |α + V K

1122
{δ p2}µν |α + V K

1123
δµνp1α + V K

1124
δµνp2α

+ V K

1125
p1α p1µ p1ν + V K

1126
p2α p2µ p2ν + V K

1127
{p1p1p2}µν |α

+ V K

1128
{p2p2p1}νµ |α + V K

1129
p1µ p1ν p2α + V K

11210
p1α p2µ p2ν . (280)

The integral representation of the form factors in Eq.(280) is the following:

V K

112i
= −Γ (2 + ǫ)

∫

DVK R112i;K χ−2−ǫ
K

, i > 4 ,

R1125;K = Y2 H2
2 , R1126;K = Y1 H2

1 , R1127;K = Y2 H1 H2 ,

R1128;K = Y1 H1 H2 , R1129;K = Y1H
2
2 , R11210;K = Y2 H2

1 ,

V K

112i
= −

Γ (1 + ǫ)

2

∫

DVK x2 R112i;K χ−1−ǫ
K

, i = 1, 2 ,

R1121;K = −H2 , R1122;K = −H1 ,

V K

112i
= −

Γ (1 + ǫ)

2

∫

DVK x2

[

R112i;K + y−1
3 x2 Q112i;K

]

χ−1−ǫ
K

, i = 3, 4 ,

R1123;K = 1 − x1 − H2 , R1124;K = 1 − x1 − H1 , Q1123;K = Y2 , Q1124;K = Y1 . (281)

9.7.3 V H family

For general definitions see Section 9.6. We finally analyze the rank three tensor integrals in the family
V H . The tensor integrals V H(µ, ν, α|0) and V H(0|µ, ν, α) can be decomposed into form factors in complete
analogy with Eq.(269). We provide here the integral representations for these form factors,

V H

222i
= −Γ (2 + ǫ)

∫

DVH y3 R222i;H χ−2−ǫ
H

, i > 2 ,

R2223;H = − (z2 − z3)
2 (1 − z1 − z2) , R1114;H = (z2 − z3) (1 − z1 − z2)

2 ,

R2225;H = (z2 − z3)
3 , R2226;H = − (1 − z1 − z2)

3 ,

V H

222i
= −

1

2
Γ (1 + ǫ)

∫

DVH y R222i;H χ−1−ǫ
H

, i = 1, 2 ,

R2221;H = z2 − z3 , R2222;H = − (1 − z1 − z2) , (282)
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where the integration measure is given in Eq.(253). Also

V H

111i
= −Γ (2 + ǫ)

∫

DVK x3 y3 R111i;H χ−2−ǫ
H

, R111i;H = −R222i;H , i > 2 ,

V H

111i
= −

1

2
Γ (1 + ǫ)

∫

DVH x2 y
[

xR111i;H +
x

y
Q111i;H

]

χ−1−ǫ
H

, i = 1, 2,

R1111;H = Q1111;H = z3 − z2 , R1112;H = Q1112;H = 1 − z1 − z2 . (283)

For the tensor integral V H(µ|ν, α) we employ another decomposition into form factors, based on the defini-
tions of Eq.(13):

V H(µ|ν, α; · · ·) = V H

1221
{δ p1}να |µ + V H

1222
{δ p2}να |µ + V H

1223
δναp1µ + V H

1224
δναp2µ + V H

1225
p1α p1µ p1ν

+ V H

1226
p2α p2µ p2ν+V H

1227
{p1 p1 p2}µνα+V H

1228
{p1 p2 p2}µνα , (284)

obtaining the following parametrization:

V H

122i
= −Γ (2 + ǫ)

∫

DVH y2 x y R122i;H χ−2−ǫ
H

, i > 4 ,

R1225;H = − (z2 − z3)
3, R1226;H = (1 − z1 − z2)

3,

R1227;H = (z2 − z3)
2 (1 − z1 − z2), R1228;H = − (z2 − z3) (1 − z1 − z2)

2,

V H

122i
= −

1

2
Γ (1 + ǫ)

∫

DVH xR122i;H χ−1−ǫ
H

, i ≤ 4 ,

R1221;H = y (z2 − z3), R1222;H = − y (1 − z1 − z2),

R1223;H = − y (z2 − z3), R1224;H = y (1 − z1 − z2) . (285)

Finally, for the tensor integral V H(µ, ν|α) we adopt the decomposition

V H(µ, ν|α; · · ·) = V H

1121
{δ p1}µν |α + V H

1122
{δ p2}µν |α + V H

1123
δµνp1α + V H

1124
δµνp2α + V H

1125
p1α p1µ p1ν

+ V H

1126
p2α p2µ p2ν +V H

1127
{p1 p1 p2}µνα+V H

1128
{p1 p2 p2}µνα , (286)

where symmetrized products are defined in Eq.(13). We obtain the corresponding expression for the form
factors:

V H

112i
= −Γ (2 + ǫ)

∫

DVH y x2 y2 R112i;H χ−2−ǫ
H

, R112i;H = −R122i;H, i > 4 ,

V H

112i
= −

1

2
Γ (1 + ǫ)

∫

DVH xR112i;H χ−1−ǫ
H

, i = 1 · · · 4 ,

R1121;H = −x y (z2 − z3) , R1122;H = x y (1 − z1 − z2) ,

R1123;H = (1 − x y) (z2 − z3) , R1124;H = − (1 − x y) (1 − z1 − z2) . (287)

Note that V H(µ|ν, α) and also V H(µ, ν|α) require a smaller number of form factors than V K(µ|ν, α) and
V K(µ, ν|α). One can check that this is indeed the case by repeating the arguments already used in discussing
V H(µ|ν).

We conclude observing that another way of parametrizing rank three tensors is through Eq.(48), after
which the corresponding form factors are obtained with the help of Eq.(51); the two sets of form factors are
easily related but with this parametrization and for a singular Gram matrix the inversion can be done with
its pseudo-inverse, as pointed out in [22].

9.8 Diagrammatic interpretation of the reduction procedure

All the manipulations discussed in the previous Sections, aimed at reducing form factors to combinations
of scalar integrals, have a diagrammatic counterpart. Diagrams with reducible scalar products in the numer-
ator give rise to standard scalar functions of the same family and contractions corresponding to diagrams
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q2 · p1 ⊗ = −
1

2
l145

−
1

2
+

1

2

Figure 12: Diagrammatic interpretation of the reduction induced by a reducible scalar product. Here l145 = p2
1 −

m2
4 + m2

5, while the symbol ⊗ denotes insertion of a scalar product into the numerator of the diagram.

with fewer internal lines, as illustrated in Fig. 12 (there, the symbol ⊗ denotes insertion of a scalar product
into the numerator of the diagram). The figure is based on the simple relation 2 q2 · p1 = [5]K − [4]K − l145.
After permutation of momenta we obtain the first of Eqs. (228) where the form factors are expressed in their
standard form.

There are 7 − I irreducible scalar products for two-loop vertices, neglecting additional branching of the
external lines (as in Fig. 5), I being the number of internal lines in the graph; in the reduction procedure
they give raise to both contractions, i.e. scalar diagrams with less propagators, and to ordinary/generalized
scalar functions of the same family as illustrated in Fig. 13. The component with contractions and ordinary

q1 · p1 ⊗ =
p2

1 p2
2 − (p1 · p2)

2

P 2
ω2

−
p1 · P

2 P 2

[

lP12 − +
]

Figure 13: Diagrammatic interpretation of the reduction induced by an irreducible scalar product. In the first diagram
of the RHS non-canonical powers −2 in propagators are explicitly indicated by a circle and the space-time dimension
is 6 − ǫ. Here lP12 = P 2

− m2
1 + m2

2 and ω = µ2/π where µ is the unit of mass. The symbol ⊗ denotes insertion of a
scalar product into the numerator of the diagram.

scalar functions is given in the second row of Fig. 13 while the irreducible component is expressed through a
generalized scalar function in 6−ǫ space-time dimension, as depicted in the first row of Fig. 13 (there, a circle
denotes a non-canonical power 2 for the corresponding propagator). Note that the irreducible component
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appears multiplied by the Gram determinant.
Whenever this relation, or similar ones, is used in the reduction procedure, the last diagram on the r.h.s.

of Fig. 13 will be written as in Eq.(228) after a rearrangement of its arguments, see Fig. 14. In principle a

−P

p2

p1

= V I

0 (−p2 − P , {m}23654)

Figure 14: Rearrangement of arguments bringing the diagram in the l.h.s. to the standard form of the I-family, see
Section 9.2.

generalized scalar function can be cast into the form of a combination of ordinary scalar functions using IBPI
techniques but, in practice, these solutions are poorly known in the fully massive case; it is somehow hard to
accept that part of our present limitations are related to a poor level of technical handling of large systems
of linear equations; however, this really represents the bottleneck of many famous approaches (see [32] for
recent developments).

10 Graphs, form factors and permutations

Diagrams of any renormalizable field theory, like the standard model, must be generated according to
the rules of the theory itself, they must be assembled to construct some physical amplitude and a reduction
must be performed. There are many technical details hidden in this procedure, in particular some efficient
way of handling the different topologies while assembling the grand total of diagrams.

We briefly illustrate our approach: for the sake of clarity we refer to the V E-family. In principle, for a fixed
choice of the external momenta we should consider three kind of diagrams, as shown in Fig. 15. However,

−P

p1

p2

−P

p1

p2

−P

p1

p2

Figure 15: The V E-family. External momenta flow inwards.

in our automatized procedure, we will only compute the first diagram of Fig. 15 since the remaining two are
obtainable through permutation of the external momenta. To illustrate the procedure we consider a specific
example, the process H(−P )+ γ(p1) + γ(p2) → 0; in the standard model there will be diagrams like the one
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of Fig. 16(a) which can be expressed as a combinations of functions V E

i···j(p2, P, M
W

, M
H

, M
W

, M
W

), but also
diagrams like in Fig. 16(b) which are always evaluated according to the conventions of Fig. 16(c). Therefore

−P

p1

p2

H
φ

H

a)

−P

p1

p2

b)

p2

−P

p1

c)

Figure 16: A V E-family contribution to H(−P ) + γ(p1) + γ(p2) → 0. External momenta flow inwards.

they correspond to combinations of functions

V E

i···j(p1,−p2, MW
, 0, M

W
, M

W
). (288)

Similarly the decomposition into form factors will be as follows:

V E(µ | 0 ; p1,−p2, MW
, 0, M

W
, M

W
) = −V E

11
(p1,−p2, · · ·)Pµ + V E

12(p1,−p2, · · ·) p1µ, (289)

etc, showing that the consistent basis to expand the form factors is (−P , p1). After permutation, the results
of our paper follow automatically. For a correct treatment of the combinatorial factors we refer the reader
to Appendix C.

11 Strategies for the evaluation of two-loop vertices

Scalar configurations for irreducible two-loop vertices were considered and evaluated in III, where tables of
numerical results were presented. The techniques include several variations of the standard BT-algorithm [17]
and the introduction of parameter-dependent C-functions (for which we refer the reader to Appendix E of
III, where they are introduced and their numerical evaluation is discussed in Eqs. (291-294)).

The same set of procedures can be easily generalized to cover a non-trivial theory (i.e. one with spin)
using the defining parametric representations and the reduction formalism derived in this article.

A few relevant examples will be shown and discussed in the following sections. We will place special
emphasis on proving that new ultraviolet poles, not present in scalar configurations, do not prevent the
derivation of representations of the class Eq.(2) for tensor integrals.

The three diagrams (with non-trivial numerators) belonging to the V 1N1-family, namely V E , V I and V M ,
are evaluated by repeated applications of the BT algorithm [17]; in this case the procedure remains the
same as for scalar configurations, since the BT-algorithm works independently of the presence of additional
polynomials of Feynman parameters in the numerator. We only have to pay some attention to the limit
ǫ → 0, which cannot be taken from the very beginning for tensor configurations that are ultraviolet divergent.
The introduction of parameter-dependent C-functions for tensor integrals of the remaining families is also
shown.

11.1 Examples in the V E-family

A typical example is given by the V E-family where we can easily provide integral representations for the
scalar representative and for the form factors, e.g.

V E

0
= −

1

ǫ2
− ∆

2

UV
+ ∆UV

[

2

∫

dC2 ln χ
E
(x, 1, y) − 1

]
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+

∫

dCS (x ; y, z)
lnχ

E
(x, y, z)

1 − y

∣

∣

∣

+
+

∫

dC2 lnχ
E
(x, 1, y)LE(x, y) −

3

2
−

1

2
ζ(2),

V E

a = −
1

2

[ 1

ǫ2
− ∆

2

UV

]

−
3

16
−

1

4
ζ(2) + 2 ∆UV

[

∫

dC2 (1 − y) lnχ
E
(x, 1, y) +

1

8

]

−

∫

dCS (x ; y, z)
[

lnχ
E
(x, y, z) + (1 − z)

lnχ
E
(x, y, z)

1 − y

∣

∣

∣

+

+

∫

dC2 (1 − y) lnχ
E
(x, 1, y)LE(x, y),

V E

b =
1

ǫ2
+ ∆

2

UV
− 2 ∆UV

∫

dC2 lnχ
E
(x, 1, y) +

∫

dCS (x ; y, z) lnχ
E
(x, y, z)

−

∫

dCS (x ; y, z)
lnχ

E
(x, y, z)

1 − y

∣

∣

∣

+
−

∫

dC2 lnχ
E
(x, 1, y)LE(x, y) + 1 +

1

2
ζ(2), (290)

V E

a = V E

21
− V E

22
, V E

b = V E

22
, (291)

where the l.h.s. of the last equation refers to the (p1, P ) basis. Furthermore, LE(x, y) = ln(1 − y) − lnx −
ln(1 − x) − lnχ

E
(x, 1, y) and χ

E
is obtained from Eq.(125) by rescaling by 1/ | P 2 |.

Smooth integral representations for higher tensors can be classified according to

V E

i = Ki + ai ∆UV

∫

dC2 yαi lnχ
E
(x, 1, y) + bi

∫

dCS (x ; y, z) zβi
lnχ

E
(x, y, z)

1 − y

∣

∣

∣

+

+

∫

dCS (x ; y, z) Pi(y, z) lnχ
E
(x, y, z) + ci

∫

dC2 yγi lnχ
E
(x, 1, y)LE(x, y), (292)

and coefficients and exponents for the first few cases are reported in Tab. 1.

i K a α b β P c γ

221 − 2
3 ∆UV ǫ−1 − 1

18 ∆UV − 1
3 ∆2

UV
− 151

216 − 1
6 ζ(2) 2 2 1 2 0 1 2

222 −2 ∆UV ǫ−1 + 1
2 ∆UV − ∆2

UV
− 7

8 − 1
2 ζ(2) 2 0 1 0 −1 − y 1 0

223 −∆UV ǫ−1 − 1
2 ∆2

UV
− 3

4 − 1
4 ζ(2) 2 1 1 1 −z 1 1

Table 1: Parameters for the V E form factors according to Eq.(292).

11.2 Examples in the V I , V M families

Consider the V I-family as a second example. All form factors can be expressed as linear combinations
of integrals of the following kind (χ

I
is obtained from Eq.(157) by rescaling by 1/ | P 2 |):

I0;I =

∫

DVI χ−1−ǫ
I

, I1x;I =

∫

DVI χ−1−ǫ
I

x, I2xx;I =

∫

DVI χ−1−ǫ
I

x2, etc. (293)
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As an illustration we derive the ultraviolet finite part for the first few integrals of the list, introducing

Ifin
n;I =

1

M2 bI

[

∫ 1

0

dxdy

∫ 1−y

0

dz1

∫ z1

0

dz2 I4
n;I +

∫ 1

0

dxdy

∫ 1−y

0

dz I3
n;I +

∫

dC2 I2
n;I + I0

n;I

]

. (294)

Notation follows closely that of Sect. 6.1 of III (see also Eq. (12) of III for the definition of [y, z, u]i) and bI

is the BT-factor of the function (see Eq. (64) of III); therefore we have

f({x} ; [y z u]i) =







f({x} ; y, z) for i = 0
f({x} ; z, z) for i = 1
f({x} ; z, u) for i = 2

. (295)

bI = (ν2
1 + µ2

3 − µ2
4)

2 − µ2
35 (1 + ν2

1 − ν2
2 ) (ν2

1 + µ2
3 − µ2

4) + µ4
35 ν2

1 + λIµ
2
3, (296)

where we have set λI = λ(1, ν2
1 , ν2

2 ) and where

µ2
i =

m2
i

| P 2 |
, i = 1, . . . , N, ν2

j =|
p2

j

P 2
|, j = 1, 2, µ2

ij = 1 + µ2
i − µ2

j . (297)

BT co-factors are

Z0;I = −λI , Z3;I = 0, Z1;I = (1 − ν2
1 − ν2

2 ) (ν2
1 − µ2

45) + 2 (ν2
1 + µ2

3 − µ2
4) ν2

2

Z2;I = −(1 − ν2
1 − ν2

2) (ν2
1 + µ2

3 − µ2
4) − 2 (ν2

1 − µ2
45) ν2

1 , Z−
i;I = Zi;I − Zi+1;I . (298)

We define additional auxiliary functions:

ξ
I
(x, y, z1, z2) = χ

I
(x, 1 − y, z1, z2),

LI(x, y, z1, z2) = ln(1 − y) − ln(x) − ln(1 − x) − ln ξ
I
(x, y, z1, z2). (299)

Our results are as follows:

I4
0;I = −

ln ξ
I
(x, y, z1, z2)

y

∣

∣

∣

+
,

I3
0;I =

[

1 − LI(x, 0, 1 − y, z)
]

ln ξ
I
(x, 0, 1 − y, z) +

1

2
ln ξ

I
(x, y, [1 − y, z, 0]0)

+
1

2

2
∑

i=0

Z−
i;I

ln ξ
I
(x, y, [1 − y, z, 0]i)

y

∣

∣

∣

+
,

I2
0;I =

1

2

2
∑

i=0

Z−
i;I ln ξ

I
(x, 0, [1 − y, z, 0]i)LI(x, 0, [1 − y, z, 0]i), I0

0;I = −
1

4
S1(1) +

1

8
,

Ii
1x;I = x Ii

0;I , (i 6= 0), I0
1x;I = −

1

8
S1(2) +

1

8
, I4

1y;I = − ln ξ
I
(x, y, z1, z2),

I3
1y;I =

1

2

2
∑

i=0

Z−
i;I ln ξ

I
(x, y, [1 − y, z, 0]i) +

1

2
y ln ξ

I
(x, y, [1 − y, z, 0]0),

I3
1y;I = I2

1y;I = 0, I0
1y;I = − 1, I4

1z1;I =
1

2
(Z1 − 3 z1)

ln ξ
I
(x, y, z1, z2)

y

∣

∣

∣

+
,

I3
1z1;I =

1

2
(Z1 − 3 z)LI(x, 0, 1 − y, z) ln ξ

I
(x, 0, 1 − y, z) +

1

2
(Z1 − y) ln ξ

I
(x, y, [1 − y, z, 0]0)

+ z ln ξ
I
(x, 0, 1 − y, z) +

1

2
Z−
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ln ξ
I
(x, y, [1 − y, z, 0]0)

y

∣

∣

∣

+
+

z

2
Z−

1;I

ln ξ
I
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y

∣

∣

∣

+
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+
z

2
Z−

2;I

ln ξ
I
(x, y, [1 − y, z, 0]2)

y

∣

∣

∣

+
,

I2
1z1;I =

1

2
Z−

0;I LI(x, 0, [1, 1 − y, 0]0) ln ξ
I
(x, 0, [1, 1 − y, 0]0)

+
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2
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Z−
i;I LI(x, 0, [1, 1 − y, 0]i) ln ξ

I
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I0
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1

6
S1(1) +
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(Z2 − 3 z2)
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∣

∣
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I
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∣

∣

+

+
z

2
ln ξ

I
(x, y, [1 − y, z, 0]0) + z ln ξ

I
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I2
1z2;I =

1 − y

2

1
∑

i=0

Z−
i;I LI(x, 0, [1, 1 − y, 0]i) ln ξ

I
(x, 0, [1, 1 − y, 0]i), I0

1z2;I = −
1

12
S1(1) +

5

72
, (300)

where Sn(k) =
∑k

l=1 l−n. Similar expressions can be written also for higher order form factors showing,
once more, that scalar and tensor integrals give similar results and can be treated in one single stroke.

Once again the whole procedure can be described in terms of a specific example. Consider the diagram of
Fig. 17 which contributes to the on-shell decay amplitude Z → l+l−. The on-shell vertex, including external
wave-functions, is decomposed according to Eq.(35) and the corresponding coefficients are subsequently
evaluated; for instance we consider the contribution coming from the diagrams of Fig. 17 and derive the
vector coefficient in the limit mf = 0. Using Eq.(38) and taking the trace we obtain the following expression

Z ν

W

W
φ

Figure 17: Diagram of the V I-family contributing to Z → l+l−.

FV =
iπ4g5s2

θ

16cθ

[

M2
Z

V I

0
(p1, P, M

Z
, M

W
, M

W
, 0, M

W
) + M2

W
V I

11
(p1, P, M

Z
, M

W
, M

W
, 0, M

W
)

+ (M2
W

+ M2
Z

)V I

12 (p1, P, M
Z
, M

W
, M

W
, 0, M

W
) + A0([MW

, M
Z
])C0(p1, p2, MW

, 0, M
W

)

− V E

0
(p1, P, M

Z
, M

W
, 0, M

W
) + V E

0
(0, P, M

Z
, M

W
, M

W
, M

W
)

+ 2 V E

11
(0, P, M

Z
, M

W
, M

W
, M

W
) − V E

12 (p1, P, M
Z
, M

W
, 0, M

W
)
]

. (301)

The form factors of the V E-family in Eq.(301) can be further reduced according to the results of Section 9.1
or, more conveniently, they can be computed according to Eqs.(118)–(123). A similar situation appears for
the form factors of Eq.(301) of the V I-family for which we use the reduction techniques of Section 9.2 or an
explicit evaluation using Eqs.(293)–(300).

Results in the V M -family are very similar in their structure and will not be reported here. Furthermore,
the graph corresponds to a one-loop self-energy insertion which should be Dyson–re-summed.
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11.3 Examples in the V G-family

Coming back to the strategy to evaluate tensor integrals, we observe that two other scalar diagrams, V G

and V K, were expressed in III in terms of integrals of C-functions (Appendix E of III).
It is very easy to extend the derivation to tensors. Consider, for instance, the V G case: starting from

Eq.(202) the appropriate strategy will be as follows. If we need to prove a WST identity, where the presence
of Gram determinants is inessential, we simply invert the system and derive V G

ij
with i, j = 1, 2 in terms of

known quantities. If instead we need to use these form factors to compute some physical observable, then
a possible strategy is the following: suppose that p2

1 6= 0, then V G

11
is eliminated and V G

12
is either given in

terms of V 1,1|1,2|2 at n = 6 − ǫ or explicitly evaluated.
If we choose the second strategy then χ

G
is a quadratic form in y1, y2, with x-dependent coefficients and

we can use the results of Appendix E of III to write

V G

12
= −

1

M2

∫

dS2({x})x2

[

C11(0) − C0(0)
]

, (302)

with |P 2| = M2. Similarly, if p1 · p2 6= 0 we can eliminate V G

21
and express V G

22
in terms of generalized scalars

as in Eq.(204), or explicitly derive

V G

22
= −

1

M2

∫

dS2({x})
[

C11(0) − C0(0)
]

. (303)

For this family the rank two tensor integrals are ultraviolet divergent. For the form factors of the 22i-family
defined in Eq.(205) the relevant quantity is V G

224
= V 2,1|1,1|1 evaluated at n = 6− ǫ which, with χ

G
obtained

from Eq.(197) by rescaling by 1/ | P 2 |, can be rewritten according to

V G

224
= −

1

2

( ω

M2

)ǫ

Γ (ǫ)

∫

dS2({x})
[

x2 (1 − x2)
]−1−ǫ

∫

dS2({y})y
ǫ/2
2 χ−ǫ

G
. (304)

Eq.(304) shows the expected ultraviolet poles; indeed the integral is overall ultraviolet divergent and so is
the (β, γ) sub-diagram. With ω defined in Eq.(15) and χ

G ; 0
= χ

G
(x2 = 0) we obtain

V G

224
=

1

2

∫

dS2(x1, x2)

∫

dS2(y1, y2) (1 − x2)
−1 V G ; 4

224
+

1

2

∫

dCS (x1 ; y1, y2) V G ; 3
224

+ K,

V G ; 4
224

= lnχ
G ; 0

+
lnχ

G

x2

∣

∣

∣

+
, V G ; 3

224
= − lnχ

G ; 0

(

∆UV − lnx1 +
1

2
ln y2 −

1

2
lnχ

G ; 0

)

,

K =
1

8

( 1

ǫ2
+ ∆

2

UV

)

−
3

16
∆UV +

7

64
−

1

8
ζ(2), (305)

where, as usual, ∆UV = 1/ǫ − ∆UV and ∆UV = γ − lnω/M2, with M2 =| P 2 |. Similarly V G

114
will develop

a double ultraviolet pole being overall divergent with (α, γ) divergent. In this case the additional pole is
hidden in the y2-integration, as shown in Eq.(217).

11.4 Examples in the V K, V H-families

Also the V K-family can be expressed in terms of well-behaved integrals of C-functions, introduced in
Appendix E of III. From Eq.(230) we see that one of the relevant objects to be evaluatet is IR;K = V 1,1|1,2,1|2

for n = 6 − ǫ: the important result is that this quantity can be computed along the same lines of the
corresponding scalar integral.

The derivation is straightforward: starting from Eq.(224) we will adopt the same technique as in Sect. 9.1
of III; with X = (1 − x1)/(1− x2) = 1 −X we change variables according to y1 = y′

1 + X y3, y2 = y′
2 + X y3

and y3 = y′
3. Next we perform the y3 integration analytically; after that the y1 − y2 interval is mapped into

the standard triangle 0 ≤ y2 ≤ y1 ≤ 1 and the net result is a combination of 10 integrals of C functions with
{x} dependent parameters, as defined in Tab. 2 of III. Therefore, we obtain expressions for both standard
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and generalized scalar as

V K

0
= −

1

M4

∫

dS2(x1, x2)
x2

∆(x1, x2)

×
[

x2
1 C0([1 − 2]) − x1 x2 C0([3 − 4]) − x1 x2 C0([5 − 6]) − x2 C0([7 − 8]) + x1 xC0([9 − 10]

]

,

IR;K = −
1

M4

∫

dS2(x1, x2)
x2

2

∆(x1, x2)

×
{

−
x3

1

x2

[

C11([1 − 2]) − C12([1 − 2])
]

− x1 x2

[

C11([5 − 6]) + C12([3 − 4])
]

+ x2
1

[

C11([3 − 4]) + C12([5 − 6])
]

−
x3

x2

[

C11([7 − 8]) − C12([7 − 8])
]

−
x1 x2

x2
C12([9 − 10]) + x1 xC0([9 − 10]) −

x2
1 x

x2
C11([9 − 10)]

}

, (306)

where Cn([i − j]) = Cn(i) − Cn(j) and where xi = 1 − xi, x = x1 − x2. Furthermore we have

∆(x1, x2) = ν2
x − x2 (1 − x2)µ2

4 + x2 (1 − x1) (µ2
4 − µ2

6 + sp),

ν2
x = −sp x2

1 + x1 (−sp + µ2
1 − µ2

2) + x2 (µ2
3 − µ2

1) + µ2
2, (307)

where, according to III, we introduced P 2 = − sp M2, µ2
i = m2

i / | P 2 | and ν2
j =| p2

j/P 2 |.
In this family we can show another example of ultraviolet divergent form factor in a situation where the

corresponding scalar integral is convergent. Consider V K

114
defined in Eq.(244). Since the q1 sub-loop diverges

we expect a simple pole at ǫ = 0. Let us define

x2 (1 − x2)χ
K

(x1, x2, y1 + X y3, y2 + X y3, y3) = ξ
K

({x}, {y}) ≡ ξ
K

(y1, y2, y3), (308)

where χ
K

is obtained from Eq.(225) by rescaling by 1/ | P 2 |; ξ
K

is a quadratic form in y1, y2, linear in y3,
with x-dependent coefficients. The procedure of extracting the ultraviolet pole (a subtraction, as introduced
in III), followed by a mapping of the y1, y2 integration regions into the standard triangle 0 ≤ y2 ≤ y1 ≤ 1,
will introduce several new quadratic forms which will be enumerated as follows:

ξ(1 − y1, 1 − y2) = ξ1, ξ(1 − X y1, 1 − X y2) = ξ2,

ξ(1 − X y1, 1 − y2) = ξ3, ξ(1 − y1, 1 − X y2) = ξ4,

ξ(X y1, X y2) = ξ5, ξ(1 − X y2, 1 − y1) = ξ6,

ξ(1 − y2, 1 − X y1) = ξ7, ξ(1 − X y3 y1, 1 − X y3 y2) = ξ8,

ξ(1 − X y1, X y2) = ξ9, ξ(1 − X y3 y1, 1 − y2) = ξ10,

ξ(1 − X y3 y2, 1 − y1) = ξ11, ξ(X y3 y2, X y3 y1) = ξ12,

ξ(1 − y1, X y2 y3) = ξ13, ξ(1 − X y3 y2, X y3 y1) = ξ14,

ξ(1 − X y3 y1, X y3 y2) = ξ15, ξ(1 − y2, X y3 y1) = ξ16,

ξ(1 − X y3 y1, 1 − X y3 y2, y3) = ξ17, ξ(1 − X y3 y1, 1 − y2, y3) = ξ18,

ξ(1 − X y3 y1, X y3 y2, y3) = ξ19, ξ(1 − y1, X y3 y2, y3) = ξ20,

ξ(1 − y2 y3 X, 1 − y1, y3) = ξ21, ξ(1 − y2 y3 X, y1 y3 X, y3) = ξ22,

ξ(1 − y2, y1 y3 X, y3) = ξ23, ξ(y2 y3 X, y1 y3 X, y3) = ξ24,

ξ(1 − y2, 1 − y1) = ξ25, ξ(1 − y2, 1 − y1, y3) = ξ26, (309)

where ξ
K

(y1, y2) ≡ ξ
K

(y1, y2, 0). We introduce new functions corresponding to well-defined integrals of the
C-class:

∫

dS2(y1, y2) ξ−1−ǫ
l = C0

0
(l) −

ǫ

2
C1

0
(l) + O

(

ǫ2
)

, Cl
1i(l) =

∫

dS2(y1, y2) ξ−1
l ln yi. (310)
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All of them can be evaluated with the same algorithm described in Appendix E of III. Collecting all the
ingredients we obtain

V K

114
= −

1

2

( ω

M2

)ǫ Γ (1 + ǫ)

M4

∫

dS2({x})x2

[

V SP

114;K

1

ǫ
+ V A

114;K +

∫ 1

0

dy3 V B

114;K

]

, (311)

V P

114;K = 2 x1

[

C0
0
(3) + C0

0
(6)

]

− 2
x2

1

x2
C0

0
(2) + 2

x2

x2
C0

0
(5), (312)

V A

114;K = −
xx1

x2

[
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11

(9) − Cl
12(9)

]
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C0
0
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0
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. (313)

Note that in V114 ; B;K the C-functions have parameters which depend on x1, x2 and also on y3.
The V H-family is characterized by having ultraviolet finite components up to rank four tensors. Therefore,

the techniques introduced in Sect. 10 of III can be transferred in an integral manner to all relevant form
factors discussed in this article.

12 Conclusions

Any realistic calculation of physical observables in the framework of quantum field theory is remarkably
more demanding than simply having at our disposal techniques to evaluate few special scalar diagrams.
There are of course different strategies to compute complex diagrams but, to a large extent, they all amount
to reducing a large number of integrals to some minimal set of master (irreducible) integrals.

As a starting procedure, one always saturates the Lorentz indices in the Green functions so that the
numerator of the Feynman integrals contains powers of scalar products. The novelty in the analysis of two-
loop vertices consists in the presence of so-called irreducible scalar products, namely, configurations in which
the available propagators are not sufficient to algebraically simplify the numerator. Note that irreducible
scalar products already occur in two-loop self-energies; there, however, the technique of reduction in sub-
loops [7] alleviates their irreducibility (see our presentation in Section 5).

We showed that tensor integrals can be first of all decomposed into a combination of form factors, many
of which can be reduced to scalar integrals (either of the same family or of families with a smaller number
of propagators), while few irreducible integrals remain. It is then possible to relate these latter ones to
generalized scalar integrals of the same family, i.e. integrals in shifted space-time dimensions and with non-
canonical powers of the propagators. The number of these generalized scalar integrals can be further reduced
using generalized recurrence relation techniques introduced by Tarasov in [27].

Alternatively, we developed our favorite strategy: following the findings of our work on one-loop multi-leg
diagrams, we sought for a procedure where all integrals occurring in a realistic calculation can be written
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in a form analogous to Eq.(2). The practicality of this approach was strengthened in Section 11 by the
explicit treatment of several form factors, paying particular attention to those cases where new or additional
ultraviolet poles arise. In a line, we assembled the bases for extending a diagram generator to an evaluator
of physical observables.

In our opinion, the optimal algorithm puts tensor integrals on the same footing as scalar ones and
should not, therefore, introduce any multiplication of the tensor integrals by negative powers of Gram
determinants. The numerical quality of tensor integrals should also not be worsened, as a consequence of
the adopted reduction algorithm, by expressing them as linear combinations of master integrals; in this case,
the kinematic coefficients have zeros corresponding to real singularities of the diagram, but their behavior
around the singularity is always badly overestimated.

These shortcomings are not severe in the (almost) massless world of QED/QCD, but they turn into serious
disadvantages in the massive world of the full-fledged Standard Model (SM). We found it more convenient
to interpret irreducible configurations as integrals in the canonical 4 − ǫ dimensions with polynomials of
Feynman parameters in the numerator; they can be computed – numerically – as well as the scalar ones.
Several explicit examples were presented in Section 11.

Once we have reduced all obviously-reducible structures, we may as well compute all remaining quantities
numerically. We must of course avoid situations where cancellations are expected: this may happen when
the final result contains a very large number of terms, when apparent singularities are present (see Sect.
D of III for a discussion) or when inherent gauge cancellations do not support a blind application of the
procedure. We do not expect our approach to suffer from problems more severe than those encountered
in other methods, but this remains to be fully tested in explicit two-loop applications. Comfortingly, our
findings in numerical one-loop analysis (but also independent work [33]) support this claim.

In conclusion, we collected in one single place all the formulae needed to reduce fully massive tensor
integrals, diagram-by-diagram up to three-point functions, to generalized scalar integrals. One may then
choose how to proceed; for instance, using explicit integral representations for these functions and evaluating
them with the same algorithms of smoothness (or with some of their generalizations) introduced in [5] for
ordinary scalar functions.

Although we believe that there is no substitute for writing linearly, and that any article should be read
linearly as well, we inserted several Appendices to be consulted as a reference.

The collection of results of this article contains all the ingredients needed to renormalize the SM (or any
other renormalizable field theory) at the two-loop level, and to calculate the two-loop gauge boson complex
poles as well as physical observables related to processes of the type V (S) → ff , the decay of vector or scalar
particles into fermion–anti-fermion pairs. The use of projector techniques [20], augmented by the explicit
reduction formulae that we collected, with the supplement of suitable integral representations for irreducible
components, are the main tools to carry out the program.
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A Reduction for generalized one-loop functions

Generalized one-loop functions can be treated according to the BT-algorithm discussed in [3]. For
B0(α, β ; p, m1, m2) one may use the results of Sect. 3 of [3], in particular Eqs. (23-24).

For the C-family there is full reducibility and, moreover, different scalar integrals can be related among
each other and expressed in terms of standard scalar functions. The most convenient approach is based on
the fact that all C-functions can be evaluated according to the BT-algorithm. We illustrate the procedure for
functions of weight 4, where the weight is defined to be the sum of the (positive) powers in the propagators;
all C functions can be written as

C[w = 4] =

∫

dS2 P (x1, x2)V −2−ǫ/2(x1, x2), P (x1, x2) =

N
∑

n=0

M
∑

m=0

anm xn
1 xm

2 , (314)

where w = α1 + α2 + α3 and where the polynomial P depends on the specific case under consideration. For
standard (w = 3) form factors (from C11 to C24) the corresponding polynomials are given in Eq. (41) of [3].
For scalar functions of weight 4 the P are 1 − x1 for C0(2, 1, 1), x1 − x2 for C0(1, 2, 1) and x2 for C0(1, 1, 2).

Higher weights can be evaluated recursively, e.g.

C[w = 4] =

N
∑

n=0

M
∑

m=0

anm

(2 + ǫ)B3
Cnm[w = 4],

Cnm[w = 4] =

∫

dS2 V −1−ǫ/2(x1, x2)
[

n X1 xn−1
1 xm

2 + m X2 xn
1 xm−1

2 + (ǫ − n − m)xn
1 xm

2

]

+

∫

dC1

[

(1 − X1)xm
1 V −1−ǫ/2(1, x1) + (X1 − X2)xn+m

1 V −1−ǫ/2(x1, x1)

+ δm,0 X2 V −1−ǫ/2(x1, 0)
]

, (315)

where, with the definition of Eq.(19), the quadratic form V is

V (x1, x2) = xt Gx + 2 Kt x + L, Gij = − pi · pj, L = m2
1,

K1 =
1

2
(p2

1 + m2
2 − m2

1), K2 =
1

2
(P 2 − p2

1 + m2
3 − m2

2), (316)

with P = p1 + p2. Furthermore, B3 = L − Kt G−1 K and X = −G−1 K. For w = 3 we finally have

Cnm[w = 3] = C0
mn −

1

2

∫

dC1 C1
mn −

1

2

∫

dS2 xn−1
1 xm−1

2 C2
mn

]

, (317)

where the coefficients are

C0
mn =

1

(2 + n + m) (1 + m)
,

C1
mn = (X1 − X2)xn+m

1 ln V (x1, x1) + δm,0 X2 xn
1 ln V (x1, 0) + (1 − X1)xm

1 ln V (1, x1),

C2
mn = (m X2 x1 − (2 + n + m)x1 x2 + n X1 x2) ln V (x1, x2). (318)

D-family functions of weight 5 can be reduced recursively with three iterations of the BT-algorithm; see
Sect. (6.2) of [3] for a discussion, in particular Eqs. (140-142). These functions are not needed in this paper.

B Summary of the results for the reduction of three-point functions

In this Section we present a summary of the results obtained for the reduction of two-loop three-point
functions and derived in Sections 9.1–9.6. Tensor integrals are defined by having powers of momenta in the
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numerator; they are further decomposed into form factors ⊗ tensor structures and, for completeness, the
full collection of results is presented for the form factors as well as for tensor integrals with saturated indices;
the latter are perhaps the most important objects when one computes physical amplitudes in the framework
of the projector techniques introduced in Section 4.

The presentation is organized through a series of concatenated formulae that can be easily coded with any
of the well-known packages for symbolic manipulation; the formulae below can thus be used as they stand or
they can be used recursively. Each object of the list contains scalar functions or form factors corresponding
to tensors of lower rank and with fewer propagators that can be found earlier in the list and, if needed, the
procedure can be iterated until the chain of reductions stops with a fully scalarized expression.

Formulae for ordinary scalar vertex functions can be found in III where, however, the alphameric con-
vention was not yet used and therefore the correspondence is based on Eq.(25). In particular, V E

0
≡ V 121

0

in Sect. 5.1, V I

0
≡ V 131

0
in Sect. 6.1, V G

0
≡ V 221

0
in Sect. 7.1, V M

0
≡ V 141

0
in Sects. 8.1 – 8.2, V K

0
≡ V 231

0
in

Sects. 9.1 – 9.2 and V H

0
≡ V 222

0
in Sect. 10.4 of III. Additional material, with the extension to generalized

scalar functions, is presented in this paper in Sects. 11.1 – 11.4. Finally, reduction of one-loop generalized
form factors has been discussed in Appendix A.

Additional notation, relevant for this Appendix, was given in the Introduction but is repeated here: we
denote by G the Gram matrix arising in the context of a vertex function and use

Gij = pi · pj , D = detG = p2
1 p2

2 − (p1 · p2)
2, D1 = p2

1 p2
2, D2 = p12 p2

2, D3 = p12 p2
1. (319)

Before presenting the list of results we would like to discuss one specific example. Consider a rank two tensor,
e.g. from Section 9.5, where all indices are saturated with external momenta:

V K(0 | p1, p1) =
1

2

{

−l145

[

V K

21
p2
1 + V K

22
p12

]

− V G

21
(P, P, p1, {m}12365) p2

1

+ p1 · P
[

V G

21
(P, P, 0, {m}12364) − V G

22
(P, P, 0, {m}12364)

]}

. (320)

After the first step in the reduction there is no Gram determinant but the latter may still be hidden in
form factors corresponding to tensors of lower rank. As a matter of fact, we may iterate the procedure and
consider

V K

21
p2
1 + V K

22
p12 = V K(0 | p1),

p1 · P
[

V G

21
(P, P, 0, {m}12364) − V G

22
(P, P, 0, {m}12364)

]

= V G(0 | p1 ; P, P, 0, {m}12364),

V G

21
(P, P, p1, {m}12365). (321)

A reduction, which is again free from Gram determinants, can be applied to the first term in Eq.(321); how-
ever, further scalarization for the last two can only be performed if Gram determinants do not pose a problem,
as in proving WST identities; otherwise the reduction chain for these terms should stop and their evaluation
will follow according to the corresponding defining representation (note that V G(0 |P ; P, P, 0, {m}12364) is
instead fully reducible). Alternatively, the term can be further reduced with generalized recurrence relations
which, however, introduce additional kinematic coefficients, with the appearance of (physical) singularities
etc, etc.

In summarizing the whole set of results we adopt the following convention: the list of arguments of tensor
integrals in a given class is suppressed when we present their reduction; therefore

V E

J
≡ V E

J
(p2, P, {m}1234), V I

J
≡ V I

J
(p1, P, {m}12345),

V M

J
≡ V M

J
(p1, P, {m}12345), V G

J
≡ V G

J
(p1, p1, P, {m}12345),

V K

J
≡ V K

J
(P, p1, P, {m}123456), V H

J
≡ V H

J
(−p2, p1,−p2,−p1, {m}123456),

where J denotes a generic form factor in the family and where, for the M family we always assume m6 = m3.
We also report, for completeness the definitions of all form factors occurring in our paper:

V J(µ | 0 ; · · ·) =
∑

i=1,2

V J

1i
piµ, V J(0 |µ ; · · ·) =

∑

i=1,2

V J

2i
piµ, J = E, I, M, G, K, H,
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V E(µ, ν | 0 ; · · ·) = V E

111
p1µ p1ν + V E

112
p2µ p2ν + V E

113
{p1 p2}µν + V E

114
δµν , etc,

V I(0 |µ, ν ; · · ·) = V I

221
p1µ p1ν + V I

222
p2µ p2ν + V I

223
{p1p2}µν + V I

224
δµν , etc,

V M(0 |µ, ν ; · · ·) = V M

221
p1µ p1ν + V M

222
p2µ p2ν + V M

223
{p1p2}µν + V M

224
δµν , etc,

V G(0 |µ, ν ; · · ·) = V G

221
p1µ p1ν + V G

222
p2µ p2ν + V G

223
{p1p2}µν + V G

224
δµν

V G(µ | ν ; · · ·) = V G

121
p1µ p1ν + V G

122
p2µ p2ν + V G

123
p1µ p2ν + V G

125
p1ν p2µ + V G

124
δµν ,

V G(µ, ν | 0 ; · · ·) = V G

111
p1µ p1ν + V G

112
p2µ p2ν + V G

113
{p1p2}µν + V G

114
δµν ,

V K(0 |µ, ν ; · · ·) = V K

221
p1µ p1ν + V K

222
p2µ p2ν + V K

223
{p1 p2}µν + V K

224
δµν ,

V K(µ | ν ; · · ·) = V K

121
p1µ p1ν + V K

122
p2µ p2ν + V K

123
p1µ p2ν + V K

125
p1ν p2µ + V K

124
δµν ,

V K(µ, ν | 0 ; · · ·) = V K

111
p1µ p1ν + V K

112
p2µ p2ν + V K

113
{p1p2}µν + V K

114
δµν ,

V H(0 |µ, ν ; · · ·) = V H

221
p1µ p1ν + V H

222
p2µ p2ν + V H

223
{p1p2}µν + V H

224
δµν ,

V H(µ, ν | 0; · · ·) = V H

111
p1µ p1ν + V H

112
p2µ p2ν + V H

113
{p1p2}µν + V H

114
δµν ,

V H(µ | ν; · · ·) = V H

E
p1µ p1ν + V H

122
p2µ p2ν + V H

123
{p1 p2}µν + V H

124
δµν ,

V M(µ, ν, α | 0; · · ·) = V M

1111
{δ p1}µνα + V M

1112
{δ p2}µνα + V M

1113
{p1p1p2}µνα + V M

1114
{p2p2p1}µνα

+ V M

1115
p1µ p1ν p1α + V M

1116
p2µ p2ν p2α, etc,

V M(0 |µ, ν, α; · · ·) = V M

2221
{δ p1}µνα + V M

2222
{δ p2}µνα + V M

2223
{p1p1p2}µνα + V M

2224
{p2p2p1}µνα

+ V M

2225
p1µ p1ν p1α + V M

2226
p2µ p2ν p2α, etc,

V M(µ | ν, α; · · ·) = V M

1221
{δ p1}µνα + V M

1222
{δ p2}µνα + V M

1223
{p1p1p2}µνα + V M

1224
{p2p2p1}µνα

+ V M

1225
p1µ p1ν p1α + V M

1226
p2µ p2ν p2α,

V M(µ, ν |α; · · ·) = V M

1121
{δ p1}µνα + V M

1122
{δ p2}µνα + V M

1123
{p1p1p2}µνα + V M

1124
{p2p2p1}µνα

+ V M

1125
p1µ p1ν p1α + V M

1126
p2µ p2ν p2α + V M

1127
{δ p1}µν |α + V M

1128
{δ p2}µν |α,

V K(µ | ν, α; · · ·) = V K

1221
{δ p1}να |µ + V K

1222
{δ p2}να |µ + V K

1223
δναp1µ + V K

1224
δναp2µ

+ V K

1225
p1α p1µ p1ν + V K

1226
p2α p2µ p2ν + V K

1227
{p1 p1 p2}αν |µ

+ V K

1228
{p2 p2 p1}να |µ + V K

1229
p1α p1ν p2µ + V K

12210
p1µ p2ν p2α,

V K(µ, ν |α; · · ·) = V K

1121
{δ p1}µν |α + V K

1122
{δ p2}µν |α + V K

1123
δµνp1α + V K

1124
δµνp2α

+ V K

1125
p1α p1µ p1ν + V K

1126
p2α p2µ p2ν + V K

1127
{p1p1p2}µν |α

+ V K

1128
{p2p2p1}νµ |α + V K

1129
p1µ p1ν p2α + V K

11210
p1α p2µ p2ν ,

V H(µ | ν, α; · · ·) = V H

1221
{δ p1}να |µ + V H

1222
{δ p2}να |µ + V H

1223
δναp1µ + V H

1224
δναp2µ + V H

1225
p1α p1µ p1ν

+ V H

1226
p2α p2µ p2ν + V H

1227
{p1 p1 p2}µνα + V H

1228
{p1 p2 p2}µνα,

V H(µ, ν |α; · · ·) = V H

1121
{δ p1}µν |α + V H

1122
{δ p2}µν |α + V H

1123
δµνp1α + V H

1124
δµνp2α + V H

1125
p1α p1µ p1ν

+ V H

1126
p2α p2µ p2ν + V H

1127
{p1 p1 p2}µνα + V H

1128
{p1 p2 p2}µνα. (322)

We are now ready to summarize the results; tags were introduced to facilitate the search of the various items,
for instance results related to rank two tensor integrals of the kl group (kl = {11, 12, 22}) in the J family
(J = E, I, M, G, K and H) are to be searched under the tag VJ

kli
.

B.1 V E(p2, P, {m}1234) family

VE

ij
Results were derived in Section 9.1.1. Referring to Eq.(126), for vector integrals we have

V E

1i
=

1

2

[

V E

2i
+ m2

21 V I

2i
(p2, P, {m}12, 0, {m}34) − C1i(p2, p1, 0, {m}34)A0([m2, m1])

]

,

V E

21
= −ω2

[

V
2|1,2|1

E + V
1|1,2|2

E

] ∣

∣

∣

n=6−ǫ
, V E

22
= −ω2

[

V
2|2,1|1

E + V
2|1,2|1

E + V
1|2,1|2

E + V
1|1,2|2

E

] ∣

∣

∣

n=6−ǫ
.(323)

VE

22i
For tensor integrals (see Section 9.1.2) we introduce a vector UE

22
with components

UE

22 ; 1
=

1

2

[

−V E

22
(2 p12 + l134) + SA

0
(P, {m}124) − SA

0
(p2, {m}123)
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+ SA

2
(P, {m}124) − SA

2
(p2, {m}123)

]

,

UE

22 ; 2
= −V E

0
(p2

2 + m2
3) − V E

21
(p12 −

1

2
l134) − 2 V E

22
p2
2 − (n − 1)V E

224

+
1

2
SA

0
(P, {m}124) −

1

2
SE

2
(P, {m}124), (324)

then one obtains
(

V E

223

V E

222

)

= G−1 UE

22
, p2

1 V E

221
= − p12 V E

223
− V E

224
+ UE

22 ; 2
, (325)

with a generalized function

V E

224
=

1

2
ω2

[

V
2|1,1|1

E + V
1|1,1|2

E

] ∣

∣

∣

n=6−ǫ
. (326)

For tensors with saturated indices we obtain

V E(0 |µ, µ) = −V E

0
(p2

2 + m2
3) − 2 V E

22
p2
2 − 2 V E

21
p2
1 + SA

0
(P, {m}124)

V E(0 | p1, p1) = −(p12 V E

22
+ p2

1 V E

21
) (p12 +

1

2
l134) +

1

2
p1 · P

[

SA

0
(P, {m}124) + SA

2
(P, {m}124)

]

−
1

2
p12

[

SA

0
(p2, {m}123) + SA

2
(p2, {m}123)

]

,

p2
1 V E(0 | p2, p2) = −V E

224
(n − 2)D − V E

22
p2
2 (2 D +

1

2
p12 l134 + p2

12)

− V E

0
(p2

2 + m2
3)D − V E

21

[

D (p12 −
1

2
l134) + p2

12 (p12 +
1

2
l134)

]

+
1

2
SA

0
(P, {m}124) (D + D2 + p2

12) −
1

2
SA

0
(p2, {m}123)D2

−
1

2
SA

2
(P, {m}124) (D − D2 − p2

12) −
1

2
SA

2
(p2, {m}123)D2,

V E(0 | p1, p2) = −(V E

22
p2
2 + V E

21
p12) (

1

2
l134 + p12) +

1

2
p2 · P

[

SA

0
(P, {m}124) + SA

2
(P, {m}124)

]

−
1

2
p2
2

[

SA

0
(p2, {m}123) + SA

2
(p2, {m}123)

]

. (327)

VE

12i
Furthermore we obtain

V E

12i
=

1

2

[

V E

22i
+ m2

21 V I

22i
(p2, P, {m}12, 0, {m}34) + C2i(p2, p1, 0, {m}34)A0([m2, m1])

]

. (328)

VE

11i
Finally, for i < 4 we have

4 (n − 1)V E

11i
= n V E

22i
+ n m4

12 V M

22i
(p1, P, {m}12, 0, {m}34, 0)

+ 2 (n m2
21 + 2 m2

1)V I

22i
(p2, P, {m}12, 0, {m}34)

− n A0(m1)
[

m2
12 C2i(2, 1, 1 ; p2, p1, 0, {m}34) − C2i(p2, p1, 0, {m}34)

]

− A0(m2)
[

(3 n − 4)C2i(p2, p1, 0, {m}34) + n m2
21 C2i(2, 1, 1 ; p2, p1, 0, {m}34)

]

, (329)

while, for i = 4 it follows that

4 (n− 1)V E

114
= n V E

224
− 2 (m2

1 + m2
2)V E

0
− V E(0|µ, µ) + n m4

12 V M

224
(p1, P, {m}12, 0, {m}34, 0)

+ 2 (n m2
21 + 2 m2

1)V I

224
(p2, P, {m}12, 0, {m}34) − m4

12 V I

0
(p2, P, {m}12, 0, {m}34)

− n A0(m1)
[

m2
12 C24(2, 1, 1 ; p2, p1, 0, {m}34) − C24(p2, p1, 0, {m}34)

]

− A0(m2)
[

(3 n − 4)C24(p2, p1, 0, {m}34) + n m2
12

C24(2, 1, 1 ; p2, p1, 0, {m}34)
]
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− A0(m1)
[

m2
21 C0(p2, p1, 0, {m}34) + B0( p1, {m}34)

]

− A0(m2)
[

m2
12 C0(p2, p1, 0, {m}34) + B0( p1, {m}34)

]

. (330)

Eq.(330) requires some of the results corresponding to the V I family: they are collected in Section B.2.

B.2 V I(p1, P, {m}12345) family

VI

2i
Results were derived in Section 9.2.1. Introduce a vector U I

2 with components

U I

2 ; 1
=

1

2

[

−l134V
I

0
− V E

0
(p1, P, {m}1245) + V E

0
(0, P, {m}1235)

]

,

U I

2 ; 2
=

1

2

[

(l154−P 2)V I

0
+V E

0
(0, p1, {m}1234) −V E

0
(0, P, {m}1235)

]

; (331)

we obtain the following result:
(

V I

21

V I

22

)

= G−1 U I

2 , V I(0 | p1) = U I

2 ; 1
, V I(0 | p2) = U I

2 ; 2
. (332)

VI

1i
Furthermore we have

V I

1i
(p1, P, {m}12345) =

1

2

m2
123

m2
3

V I

2i
(p1, P, {m}12345) −

1

2

m2
12

m2
3

V I

2i
(p1, P, {m}12, 0, {m}45)

−
1

2m2
3

A0([m1, m2])
{

δi1

∑

j=1,2

[

C1j(p1, p2, {m}345) − C1j(p1, p2, 0, {m}45)
]

+ δi2

[

C12(p1, p2, {m}345) − C12(p1, p2, 0, {m}45)
]}

. (333)

VI

22i
For rank two tensors (see Section 9.2.2) we introduce a vector U I

22
with components

U I

22 ; 1
=

1

2

[

−l134 V I

21
− V E

21
(p1, P, {m}1245) + V E

21
(0, P, {m}1235)

]

,

U I

22 ; 2
= −V I

224
+

1

2
(p2

1 − lP45)V I

22
−

1

2
V E

21
(0, P, {m}1235) . (334)

We obtain the following result:
(

V I

223

V I

222

)

= G−1 U I

22
. (335)

Introduce a vector W I

22
with components

W I

22 ; 1
= −V I

224
−

1

2
l134 V I

22
−

1

2
V E

21
(p1, P, {m}1245) +

1

2
V E

22
(0, P, {m}1235),

W I

22 ; 2
=

1

2

[

(p2
1 − lP45)V I

21
− V E

21
(0, P, {m}1235) + V E

21
(0, p1, {m}1234

]

. (336)

We obtain the following result:
(

V I

221

V I

223

)

= G−1 W I

22
. (337)

Furthermore, we get

(2 − n)V I

224
= V I

0
m2

3 − V E

0
(p1, P, {m}1245) −

1

2

[

V I

22
lP35 + V E

21
(p1, P, {m}1245)

+ V E

21
(0, P, {m}1235) − V E

22
(0, P, {m}1235)

]

. (338)
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For the corresponding tensors with saturated indices we obtain

V I(0 |µ, µ) = −V I

0
m2

3 + V E

0
(p1, P, {m}1245),

V I(0 | p1, p1) =
1

2

[

−l134 (V I

21
p12 + V I

22
p2
1)

− V E

21
(p1, P, {m}1245) p1 · P + V E

21
(0, P, {m}1235) p12 + V E

22
(0, P, {m}1235) p2

1

]

,

p2
1 V I(0 | p2, p2) =

1

2

[

−V I

21
D2 l134 + V I

22
(D p2

1 + D l134 − D lP45 − D1 l134) − V E

21
(p1, P, {m}1245) (p2

12 + D2)

+ V E

21
(0, P, {m}1235) (−D + D2) + V E

22
(0, P, {m}1235) p2

12)
]

,

V I(0 | p1, p2) =
1

2

[

−l134 (V I

21
p2
2 + V I

22
p12)

− V E

21
(p1, P, {m}1245) p2 · P + V E

21
(0, P, {m}1235) p2

2 + V E

22
(0, P, {m}1235) p12

]

. (339)

VI

12i
The form factors corresponding to the 12 and 22 groups are related by

V I

12i
(p1, P, {m}12345) =

m2
123

2m2
3

V I

22i
(p1, P, {m}12345) +

m2
21

2m2
3

V I

22i
(p1, P, {m}12, 0, {m}45)

+ ∆V I

12i
(p1, P, {m}12345), (340)

∆V I

12i
= −

1

2m2
3

A0([m1, m2])
[

C2i(p1, p2, {m}345) − C2i(p1, p2, 0, {m}45)
]

, i = 1 · · · 4. (341)

VI

11i
The form factors corresponding to the 11 and 22 groups are related by

4 (n − 1)m2
3 V I

11i
= m2

3 (2 n m2
12 + n m2

3 − 4 m2
1)V I

22i
(p1, P, {m}12345)

− m2
3

[

(n − 4)m2
1 − 2 n m2

2

]

V I

22i
(p1, P, {m}12, 0, {m}45)

+ n m2
3 m4

12

[

V M

22i
(p1, P, {m}12, 0, {m}45, 0) − V M

22i
(p1, P, {m}12345, 0)

]

− n m2
3 A0(m1)

[

C2i (p1, p2, {m}345) − C2i (p1, p2, 0, {m}45)
]

− n m2
12 A0([m1, m2])

[

m2
3 C2i(2, 1, 1 ; p1, p2, 0, {m}45)

− C2i (p1, p2, 0, {m}45) + C2i (p1, p2, {m}345)
]

+ (3 n− 4)A0(m2)
[

C2i (p1, p2, {m}345) − C2i (p1, p2, 0, {m}45)
]

, (342)

for i < 4 and

4 (n − 1)m2
3 V I

114
= −m2

3 V I(0|µ, µ ; p1, P, {m}12345) − m4
12 V I

0
(p1, P, {m}12, 0, {m}45)

+ m2
3 (2 n m2

12 + n m2
3 − 4 m2

1)V I

224
(p1, P, {m}12345)

− m2
3

[

(n − 4)m2
1 − 2 n m2

2

]

V I

224
(p1, P, {m}12, 0, {m}45)

+ n m2
3 m4

12

[

V M

224
(p1, P, {m}12, 0, {m}45, 0) − V M

224
(p1, P, {m}12345, 0)

]

− n m2
3 A0(m1)

[

C24 (p1, p2, {m}345) − C24 (p1, p2, 0, {m}45)
]

− n m2
12 A0([m1, m2])

[

m2
3 C24(2, 1, 1 ; p1, p2, 0, {m}45)

− C24 (p1, p2, 0, {m}45) + C24 (p1, p2, {m}345)
]
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+ (3 n − 4)A0(m2)
[

C24 (p1, p2, {m}345) − C24 (p1, p2, 0, {m}45)
]

+
1

m2
3

{

−A0(m1)
[

m2
123 C0(p1, p2, {m}345) + m2

21 C0(p1, p2, 0, {m}45)
]

− A0(m2)
[

m2
213 C0(p1, p2, {m}345) + m2

12 C0(p1, p2, 0, {m}45)
]

+
[

m4
12 − 2 m2

3 (m2
1 + m2

2)
]

V I

0
(p1, P, {m}12345) . (343)

This expression requires results from the V M family, presented in Section B.3.

B.3 V M(p1, P, {m}12345) family

VM

2i
Results were derived in Section 9.3.1, in particular the generalized scalar in Eq.(191). Introduce a

vector UM

2 of components

UM

2 ; 1
=

1

2

[

−V M

0
l134 − V I

0
(p1, P, {m}12345) + V I

0
(0, P, {m}12335)

]

,

UM

2 ; 2
=

1

2

[

V M

0
(l154 − P 2) + V I

0
(0, p1, {m}12334) − V I

0
(0, P, {m}12335)

]

; (344)

we obtain the following result:

(

V M

21

V M

22

)

= G−1 UM

2 , V M(0 | p1) = UM

2 ; 1
, V M(0 | p2) = UM

2 ; 2
. (345)

VM

1i
We obtain

V M

1i
(p1, P, {m}12345) =

m2
123

2m2
3

V M

2i
(p1, P, {m}12345) +

m2
12

2m4
3

[

V I

2i
(p1, P, {m}12345)

− V I

2i
(p1, P, {m}12, 0, {m}45)

]

−
A0([m1, m2])

2m4
3

[

C1i(2, 1, 1, p1, p2, m3, {m}345)m2
3

+ C1i(p1, p2, {m}345) − C1i(p1, p2, 0, {m}45)
]

. (346)

VM

22i
For rank two tensors (see Section 9.3.2) we introduce a vector UM

22
with components

UM

22 ; 1
= −

1

2

[

l134 V M

22
+ V I

22
(p1, P, {m}12345) − V I

22
(0, P, {m}12335)

]

,

UM

22 ; 2
= −V M

224
+

1

2
(p2

1 − lP45)V M

22
−

1

2
V I

22
(0, P, {m}12335) ; (347)

we obtain the following result:
(

V M

223

V M

222

)

= G−1 UM

22
. (348)

Introduce a vector W M

22
with components

W M

22 ; 1
= −V M

224
−

1

2

[

V I

21
(p1, P, {m}12345) − V I

22
(0, P, {m}12335) + l134 V M

21

]

,

W M

22 ; 2
= −

1

2

[

−(p2
1 − lP45)V M

21
+ V I

22
(0, P, {m}12335) − V I

22
(0, p1, {m}12334)

]

; (349)

we obtain the following result:
(

V M

221

V M

223

)

= G−1 W M

22
. (350)
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Furthermore we derive

(2 − n)V M

224
= V M

0
m2

3 −
1

2
V M

21
l134 +

1

2
V M

22
(p2

1 − lP45) − V I

0
(p1, P, {m}12345) −

1

2
V I

21
(p1, P, {m}12345).(351)

For tensor integrals with saturated indices we obtain

V M(0 |µ, µ) = −V M

0
m2

3 + V I

0
(p1, P, {m}12345),

p2
2 V M(0 | p1, p1) =

1

2

[

−l134 (V M

21
D1 + V M

22
D2) − V I

21
(p1, P, {m}12345)D1

− V I

22
(p1, P, {m}12345)D2 + V I

22
(0, P, {m}12335) (D1 + D2)

]

,

p2
1 V M(0 | p2, p2) =

1

2

[

−V M

21
l134 p2

12 + V M

22
(D p2

1 − D lP45 − D2 l134) − V I

21
(p1, P, {m}12345) p2

12

− V I

22
(p1, P, {m}12345)D2 − V I

22
(0, P, {m}12335) (2 D − D1 − D2)

]

,

V M(0 | p1, p2) =
1

2

[

−l134 (V M

21
p12 + V M

22
p2
2) − V I

21
(p1, P, {m}12345) p12 − V I

22
(p1, P, {m}12345) p2

2

+ V I

22
(0, P, {m}12335) p2 · P

]

. (352)

VM

12i
For tensor integrals in the 12 group we obtain

V M

12i
= V M

22i
(p1, P, {m}12345)

m2
312

2m2
3

+
m2

12

2 m4
3

[

V I

22i
(p1, P, {m}12345)

− V I

22i
(p1, P, {m}12, 0, {m}45)

]

+ ∆ V M

12i
(p1, P, {m}12345), (353)

∆ V M

12i
= −

A0([m1, m2])

2m4
3

[

C2i(p1, p2, {m}345) − C2i(p1, p2, 0, {m}45)

+ m2
3 C2i(2, 1, 1 ; p1, p2, {m}345)

]

, i = 1 · · · 4. (354)

VM

11i
For tensor integrals in the 11 group we obtain

V M

11i
=

1

4 (n − 1)

1

m4
3

{

(n m4
123 − 4 m2

1 m2
3)V M

22i
(p1, P, {m}12345) + V M

22i
(p1, P, {m}12, 0, {m}45)n m4

12

+
2

m2
3

(2 m2
1 m2

3 − n m2
12 m2

123)
[

V I

22i
(p1, P, {m}12, 0, {m}45) − V I

22i
(p1, P, {m}12345)

]

+ ∆V M

11i

}

.(355)

For i < 4 we have

∆V M

11i
= n

(

2
m2

123

m2
3

− 1
)

A0([m1, m2])
[

C2i(p1, p2, {m}345) − C2i(p1, p2, 0, {m}45)
]

− n A0([m1, m2])
[

m2
123 C2i(2, 1, 1 ; p1, p2, {m}345) + m2

12 C2i(2, 1, 1 ; p1, p2, 0, {m}45)
]

+ 2 (n − 2)A0(m2)
[

C2i(p1, p2, {m}345) − C2i(p1, p2, 0, {m}45) + m2
3 C2i(2, 1, 1 ; p1, p2, {m}345)

]

.(356)

∆V M

114
= n

(

2
m2

123

m2
3

− 1
)

A0([m1, m2])
[

C24(p1, p2, {m}345) − C24(p1, p2, 0, {m}45)
]

− n A0([m1, m2])
[

m2
123 C24(2, 1, 1 ; p1, p2, {m}345) + m2

12 C24(2, 1, 1 ; p1, p2, 0, {m}45)
]

+ 2 (n − 2)A0(m2)
[

C24(p1, p2, {m}345) − C24(p1, p2, 0, {m}45) + m2
3 C24(2, 1, 1 ; p1, p2, {m}345)

]

− m2
12 A0([m1, m2])

[

C0(p1, p2, {m}345) − C0(p1, p2, 0, {m}45)
]

− m2
3 C0(2, 1, 1 ; p1, p2, {m}345)

[

m2
123 A0(m1) + m2

213 A0(m2)
]

. (357)
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B.4 V G(p1, p1, P, {m}12345) family

VG

i1
Results were derived in Section 9.4.1, in particular the generalized scalar in Eq.(199). Introduce a

vector UG

1 with components

UG

1 ; 1
=

1

2

[

−l112 V G

0
+ V E

0
(p1, P, {m}1345) − V E

0
(0, p2, {m}2345)

]

,

UG

1 ; 2
=

1

2

[

(−l245 − 2p12)V
G

0
− V E

0
(−p2,−P, {m}5321) + V E

0
(0,−p1, {m}4321)

]

. (358)

Referring to Eq.(199) we obtain

V G

11
=

1

p2
1

[

UG

1 ; 1
+ ω2 p12 V

1,1|1,2|2
G

∣

∣

∣

n=6−ǫ

]

,

V G

21
=

1

p12

{

UG

1 ; 2
+ ω2 p2

2

[

V
1,2|1,2|1

G + V
2,1|1,2|1

G + V
1,1|1,2|2

G

] ∣

∣

∣

n=6−ǫ

}

. (359)

VG

i2
Furthermore we find

V G

12
= −ω2 V

1,1|1,2|2
G

∣

∣

∣

n=6−ǫ
, V G

22
= −ω2

[

V
1,2|1,2|1

G + V
2,1|1,2|1

G + V
1,1|1,2|2

G

] ∣

∣

∣

n=6−ǫ
. (360)

VG

22i
For rank two tensors (see Section 9.4.2) we introduce a vector UG

22
with components

UG

22 ; 1
= V G

224
(1 − n) − V G

0
(p2

1 + m2
4) − 2 V G

21
p2
1 +

1

2

[

V G

22
(P 2 − 4 p12 − l154)

+ 2 V E

0
(−p2,−P, {m}5321) − V E

0
(0,−p1, {m}4321) − V E

12
(−p2,−P, {m}5321)

]

,

UG

22 ; 2
=

1

2

[

−V G

21
(P 2 − l154) + V E

0
(−p2,−P, {m}5321)

− V E

0
(0,−p1, {m}4321) + V E

11
(−p2,−P, {m}5321) − V E

11
(0,−p1, {m}4321)

]

; (361)

we obtain the following result:
(

V G

221

V G

223

)

= G−1 UG

22
, (362)

p2
2 V G

222
= −V G

224
− V G

223
p12 −

1

2

[

V G

22
(P 2 − l154) − V E

0
(0,−p1, {m}4321) − V E

12
(−p2,−P, {m}5321)

]

,

V G

224
=

1

2
ω2 V

1,1|1,1|2
G

∣

∣

∣

n=6−ǫ
. (363)

When indices are saturated we obtain

V G(0 |µ, µ) = −V G

0
(p2

1 + m2
4) − 2 V G

21
p2
1 − 2 V G

22
p12 + V E

0
(−p2,−P, {m}5321),

V G(0 | p1, p1) = −V G

0
(p2

1 + m2
4) p2

1 − V G

224
(n − 1) p2

1

− 2 V G

21
p4
1 − 2 V G

22
D3 + V E

0
(−p2,−P, {m}5321) p2

1,

p2
1 V G(0 | p2, p2) = −V G

0
(p2

1 + m2
4) p2

12 − V G

224

[

D + (n − 1) p2
12

]

− 2 V G

21
D3 p12 − V G

22

[

D (P 2 − l154) + 2 p3
12

]

+ V E

0
(−p2,−P, {m}5321) p2

12

+ V E

0
(0,−p1, {m}4321)D + V E

12
(−p2,−P, {m}5321)D,

p12 V G(0 | p1, p2) = −V G

0
(p2

1 + m2
4) p2

12 − V G

224

[

D + (n − 1) p2
12

]

− 2 V G

21
D3 p12 −

1

2
V G

22

[

D (P 2 − l154) + 4 p3
12

]

+ V E

0
(−p2,−P, {m}5321) p2

12

+
1

2
V E

0
(0,−p1, {m}4321)D +

1

2
V E

12
(−p2,−P, {m}5321)D. (364)
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VG

12i
Introduce a vector UG

12
with components

UG

12 ; 1
=

1

2

[

−V G

22
l112 + V E

21
(p1, P, {m}1345) − V E

21
(0, p2, {m}2345)

]

,

UG

12 ; 2
=

1

2

[

V G(0 |µµ) + V G

0
m2

31 + V G

21
l112 + 2 V G

124
(n − 1)

+ 2 V E

0
(0, p2, {m}2345) + B0(p1, {m}12)B0(p2, {m}45) − V E

22
(p1, P, {m}1345)

]

; (365)

we obtain the following result:
(

V G

123

V G

122

)

= G−1 UG

12
. (366)

Introduce a vecror W G

12
with components

W G

12 ; 1
=

1

2

[

2 V G

124
(n − 1) − V G

12
(−P 2 + l145) + V G

0
m2

31 + V G(0 |µµ) − V E

22
(−p2,−P, {m}5321)

− V E

0
(−p2,−P, {m}5321) + V E

0
(0, p2, {m}2345) + B0(p1, {m}12)B0(p2, {m}45)

]

,

W G

12 ; 1
=

1

2

[

−V G

11
(P 2 − l145) + V E

0
(−p2,−P, {m}5321) − V E

0
(0,−p1, {m}4321)

− V E

11
(0,−p1, {m}4321) + V E

12
(−p2,−P, {m}5321)

]

; (367)

we obtain the following result;
(

V G

121

V G

123

)

= G−1 W G

12
. (368)

Furthermore we get

V G

125
= −

1

p12

{

V G

122
p2
2 + V G

124
+

1

2

[

−V E

0
(−p2,−P, {m}5321) − V E

22
(−p2,−P, {m}5321) + V G

12
(P 2 − l145)

]}

,

V G

124
=

1

2
ω2 V

1,1|1,1|2
G

∣

∣

∣

n=6−ǫ
. (369)

For saturated indices we have

V G(µ |µ) =
1

2

[

V G

0
m2

31 + V G(0 |µ, µ) + V E

0
(0, p2, {m}2345) + B0(p1, {m}12)B0(p2, {m}45)

]

,

V G(p1 | p1) =
1

2

[

−l112 (V G

22
p12 + V G

21
p2
1) + V E

21
(p1, P, {m}1345) p12 − V E

21
(0, p2, {m}2345) p12

− V E

0
(0, p2, {m}2345) p2

1 + V E

22
(p1, P, {m}1345) p2

1

]

,

p2
1 V G(p2 | p2) =

1

2

[

−V G

22
D2 l112 + V G

12
D (−P 2 + l145) + V G

21
(D − D1) l112

+ V E

21
(p1, P, {m}1345)D2 − V E

21
(0, p2, {m}2345)D2 + V E

0
(−p2,−P, {m}5321)D

− V E

0
(0, p2, {m}2345) p2

12 + V E

22
(p1, P, {m}1345) p2

12 + V E

22
(−p2,−P, {m}5321)D

]

,

V G(p1 | p2) =
1

2

[

−l112 (V G

22
p2
2 + V G

21
p12) + V E

21
(p1, P, {m}1345) p2

2 − V E

21
(0, p2, {m}2345) p2

2

− V E

0
(0, p2, {m}2345) p12 + V E

22
(p1, P, {m}1345) p12

]

,

p12 V G(p2 | p1) =
1

2

[

−l112 (V G

22
D2 + V G

21
D1) + 2 V G

124
D (n − 2) − V G

0
D m2

31 − V G(0 |µµ)D

+ V G

12
D (−P 2 + l145) + V E

21
(p1, P, {m}1345)D2 − V E

21
(0, p2, {m}2345)D2

+ V E

0
(−p2,−P, {m}5321)D − V E

0
(0, p2, {m}2345) (D + D1) + V E

22
(p1, P, {m}1345)D1

+ V E

22
(−p2,−P, {m}5321)D − B0(p1, {m}12)B0(p2, {m}45)D

]

. (370)
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VG

11i
For form factors belonging to the 11 group we have

(n − 1) p4
1 V G

111
=

{

V G

112

[

(n − 1)D1 − (n − 2)D
]

+ V G

0
p2
1 m2

1 +
1

2

[

− V G

11
n p2

1 l112 + V E

12
(p1, P, {m}1345)n p2

1 + (n − 2)
[

V G

12
p12 l112 + V E

0
(0, p2, {m}2345) p2

1

− V E

11
(p1, P, {m}1345) p12 + V E

11
(0, p2, {m}2345) p12

]}

,

p2
1 V G

113
=

1

2

[

−2 V G

112
p12 − V G

12
l112 + V E

11
(p1, P, {m}1345) − V E

11
(0, p2, {m}2345)

]

,

(n − 1) p2
1 V G

114
=

1

2

[

l112 (V G

11
p2
1 + V G

12
p12) − 2 V G

112
D − 2 V G

0
p2
1 m2

1 + V E

0
(0, p2, {m}2345) p2

1

− V E

12
(p1, P, {m}1345) p2

1 − V E

11
(p1, P, {m}1345) p12 + V E

11
(0, p2, {m}2345) p12

]

,

V G

112
= 4 ω4 V

1,1|1,3|3
G (n = 8 − ǫ). (371)

For saturated indices we have

V G(µ, µ | 0) = −V G

0
m2

1 + V E

0
(0, p2, {m}2345),

V G(p1, p1 | 0) =
1

2

[

−l112 (V G

11
p2
1 + V G

12
p12) + V E

0
(0, p2, {m}2345) p2

1

+ V E

12
(p1, P, {m}1345) p2

1 + V E

11
(p1, P, {m}1345) p12 − V E

11
(0, p2, {m}2345) p12

]

,

(n − 1) p4
1 V G(p2, p2 | 0) =

1

2

{

2 V G

112
(n − 2)D2 − 2 V G

0
D p2

1 m2
1 + V G

11
p2
1 l112

[

D − (n − 1) p2
12

]

+ V G

12
p12 l112

[

D − (n − 1) (D + D3)
]

+ V E

0
(0, p2, {m}2345) p2

1

[

D + (n − 1) p2
12

]

+ (n − 1) p12 (D + D1)
[

V E

11
(p1, P, {m}1345) − V E

11
(0, p2, {m}2345)

]

− V E

12
(p1, P, {m}1345) p2

1

[

D − (n − 1) p2
12

]

− D p12

[

V E

11
(p1, P, {m}1345)

− V E

11
(0, p2, {m}2345)

]}

,

V G(p1, p2 | 0) =
1

2

{

−l112 (V G

11
p12 + V G

12
p2
2) + p12

[

V E

0
(0, p2, {m}2345)

+ V E

12
(p1, P, {m}1345)

]

+ p2
2

[

V E

11
(p1, P, {m}1345) − V E

11
(0, p2, {m}2345)

]}

. (372)

B.5 V K(P, p1, P, {m}123456) family

VK

1i
Results were derived in Section 9.5.1. Referring to Eq.(226) the vector integrals are

V K

11
=

p2 · P

P 2
ω2 V

1,1|1,2,1|2
K

∣

∣

∣

n=6−ǫ
, V K

12
= V K

11
+ ω2 V

1,1|1,2,1|2
K

∣

∣

∣

n=6−ǫ
. (373)

VK

2i
Introduce a vector UK

2 with components

UK

2 ; 1
=

1

2

[

l145V
K

0
+ V G

0
(P, P, p1, {m}12365) − V G

0
(P, P, 0, {m}12364)

]

,

UK

2 ; 2
= −

1

2

[

lP46V
K

0
+ V G

0
(P, P, p1, {m}12365) − V G

0
(−P,−P,−p2, {m}21345)

]

; (374)

we obtain the following result:
(

V K

21

V K

22

)

= G−1 W K

2 , W K

2 ; 1
= UK

2 ; 1
, W K

2 ; 2
= UK

2 ; 2
− UK

2 ; 1
. (375)
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VK

22i
For rank two tensors (see Section 9.5.2) we introduce a vector UK

22
with components

UK

22 ; 1
= −

1

2

[

V K

22
l145 − V G

21
(P, P, 0, {m}12364) + V G

22
(P, P, 0, {m}12364)

]

,

UK

22 ; 2
= −

1

2

[

2 V K

224
+ V K

22
(P 2 − l165) + V G

0
(−P,−P,−p2, {m}21345)

+ V G

21
(−P,−P,−p2, {m}21345) + V G

21
(P, P, 0, {m}12364) − V G

22
(P, P, 0, {m}12364)

]

; (376)

we obtain the following result:
(

V K

223

V K

222

)

= G−1 UK

22
. (377)

Introduce a vector W K

22
with components

W K

22 ; 1
= −

1

2

[

2 V K

224
+ V K

21
l145

+ V G

21
(P, P, p1, {m}12365) − V G

21
(P, P, 0, {m}12364) + V G

22
(P, P, 0, {m}12364)

]

,

W K

22 ; 2
= −

1

2

[

V K

21
(P 2 − l165) + V G

0
(−P,−P,−p2, {m}23145) + V G

21
(−P,−P,−p2, {m}21345)

+ V G

21
(P, P, 0, {m}12364) − V G

22
(−P,−P,−p2, {m}21345) − V G

22
(P, P, 0, {m}12364)

]

; (378)

we obtain
(

V K

221

V K

223

)

= G−1 W K

22
, (379)

and also

V K

224
=

1

2 (2 − n)

[

2 V K

0
m2

4 − V K

21
l145 + V K

22
(−P 2 + l165) − V G

0
(−P,−P,−p2, {m}21345)

− 2 V G

0
(P, P, p1, {m}12365) − V G

21
(−P,−P,−p2, {m}21345) − V G

21
(P, P, p1, {m}12365)

]

. (380)

For saturated indices we get

V K(0 |µ, µ) = −V K

0
m2

4 + V G

0
(P, P, p1, {m}12365),

V K(0 | p1, p1) =
1

2

{

−l145 (V K

21
p2
1 + V K

22
p12) − V G

21
(P, P, p1, {m}12365) p2

1

+ p1 · P
[

V G

21
(P, P, 0, {m}12364) + V G

22
(P, P, 0, {m}12364)

]}

,

p2
1 V K(0 | p2, p2) =

1

2

[

−V K

21
l145 p2

12 + V K

22

[

(l165 − P 2)D − D2 l145

]

− V G

21
(−P,−P,−p2, {m}21345)D

− V G

21
(P, P, p1, {m}12365) p2

12 − V G

21
(P, P, 0, {m}12364) (2 D − D1 − D2)

+ V G

22
(P, P, 0, {m}12364) (2 D − D1 − D2) − V G

0
(−P,−P,−p2, {m}21345)D

]

,

V K(0 | p1, p2) =
1

2

{

−l145 (V K

21
p12 + V K

22
p2
2) − V G

21
(P, P, p1, {m}12365) p12

+ p2 · P
[

V G

21
(P, P, 0, {m}12364) + V G

22
(P, P, 0, {m}12364)

]}

. (381)

VK

12i
Introduce a vector UK

12
with components

UK

12 ; 1
= −

1

2

[

V K

12
l145 − V G

12
(P, P, p1, {m}12365)

+ V G

12
(P, P, 0, {m}12364) + V G

11
(P, P, p1, {m}12365) − V G

11
(P, P, 0, {m}12364)

]

,
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UK

12 ; 2
= −

1

2

[

2 V K

124
+ V K

12
(P 2 − l165) + V G

0
(−P,−P,−p2, {m}21345)

− V G

12
(P, P, 0, {m}12364) + V G

11
(−P,−P,−p2, {m}21345) + V G

11
(P, P, 0, {m}12364)

]

; (382)

we obtain the following result:
(

V K

125

V K

122

)

= G−1 UK

12
. (383)

Introduce a vector W K

12
with components

W K

12 ; 1
= −

1

2

[

2 V K

124
+ V K

11
l145 + V G

11
(P, P, p1, {m}12365)

]

,

W K

12 ; 2
= −

1

2

[

V K

11
(P 2 − l165) + V G

0
(−P,−P,−p2, {m}21345) − V G

12
(−P,−P,−p2, {m}21345)

− V G

12
(P, P, 0, {m}12364) + V G

11
(−P,−P,−p2, {m}21345) + V G

11
(P, P, 0, {m}12364)

]

; (384)

we obtain
(

V K

121

V K

123

)

= G−1 W K

12
, (385)

and also

(2 − n)V K

124
=

1

2

[

V K

0
m2

134 − V K

12
(P 2 − l165) − V K

11
l145 − V G

0
(P, P, p1, {m}12365)

− V G

0
(−P,−P,−p2, {m}21345) − V I

0
(−p2,−P, {m}23654) − V G

11
(P, P, p1, {m}12365)

− V G

11
(−P,−P,−p2, {m}21345) − B0(P, {m}12)C0(p1, p2, {m}456)

]

. (386)

For saturated indices we obtain

V K(µ |µ) =
1

2

[

−V K

0
m2

134 + V G

0
(P, P, p1, {m}12365)

+ V I

0
(−p2,−P, {m}23654) + B0(P, {m}12)C0(p1, p2, {m}456)

]

,

V K(p1 | p1) =
1

2

{

−l145 (V K

11
p2
1 + V K

12
p12) + p12 V G

12
(P, P, p1, {m}12365)

− p1 · P
[

V G

12
(P, P, 0, {m}12364) − V G

11
(P, P, 0, {m}12364) + V G

11
(P, P, p1, {m}12365)

]}

,

V K(p2 | p2) =
1

2

{

−(P 2 − l165) (V K

11
p12 + V K

12
p2
2)

− p2 · P
[

V G

0
(−P,−P,−p2, {m}21345) − V G

12
(P, P, 0, {m}12364) + V G

11
(−P,−P,−p2, {m}21345)

+ V G

11
(P, P, 0, {m}12364)

]

+ V G

12
(−P,−P,−p2, {m}21345) p12

}

,

V K(p1 | p2) =
1

2

{

−(P 2 − l165) (V K

11
p2
1 + V K

12
p12)

− p1 · P
[

V G

0
(−P,−P,−p2, {m}21345) − V G

12
(P, P, 0, {m}12364) + V G

11
(−P,−P,−p2, {m}21345)

+ V G

11
(P, P, 0, {m}12364)

]

+ V G

12
(−P,−P,−p2, {m}21345) p2

1

}

,

V K(p2 | p1) =
1

2

{

−l145 (V K

11
p12 + V K

12
p2
2) − p2 · P

[

V G

11
(P, P, p1, {m}12365)

+ V G

12
(P, P, 0, {m}12364) − V G

11
(p, p, 0, {m}12364)

]

+ p2
2

[

V G

12
(P, P, p1, {m}12365)

}

(387)

VK

11i
for the 11 group we introduce auxiliary quantities (they only appear in the present subsection)

V K

11A
= 4 ω4 V

1,1|1,3,1|3
K

∣

∣

∣

n=8−ǫ
,

71



vK

1 = −m2
1 V K

0
+ V I

0
(−P,−p2, {m}23645),

vK

2 =
1

2

[

−lP12 V K

11
+ V I

11
(p1, P, {m}13456) + V I

12
(−P,−p2, {m}23645) + V I

0
(−P,−p2, {m}23645)

]

.

vK

3 =
1

2

[

−lP12 V K

12
+ V I

12
(p1, P, {m}13456) + V I

11
(−P,−p2, {m}23645) + V I

0
(−P,−p2, {m}23645)

]

, (388)

to obtain

V K

111
= 2 V K

113
− V K

112
+ V K

11A
, P 2 V K

112
= V K

113
P 2 − vK

2 + vK

3 +
1

2
V K

11A
(P 2 + p2

1 − p2
2),

(n − 1)P 2 V K

113
=

1

4

{

2
vK

3 − vK

2

P 2
(n − 2) (p2

1 − p2
2) − 4 vK

1 + 2 vK

2 n + 2 vK

3 n

+ V K

11A

[n − 2

P 2
(p2

1 − p2
2)

2 − P 2 n + 2 (p2
1 + p2

2)
]}

,

V K

114
= −V K

113
p1 · P − V K

112
p2 · P + vK

3 . (389)

B.6 V H(−p2, p1, −p2, −p1, {m}123456) family

VH

ij
Results were derived in Section 9.6.1. Referring to Eq.(250) we have

V H

22
= ω2

[

V
1,2|1,1|2,1

H − V
2,1|1,1|1,2

H

] ∣

∣

∣

n=6−ǫ
, V H

11
= ω2

[

V
1,1|1,2|1,2

H − V
1,1|2,1|2,1

H

] ∣

∣

∣

n=6−ǫ
. (390)

Introduce a vector UH with components

UH

1 =
1

2

[

l212V
H

0
−V G

0
(p1, p1,−p2, {m}56134)+V G

0
(−P,−P,−p2, {m}34256)

]

,

UH

2 =
1

2

[

l156V
H

0
+V G

0
(p2, p2,−p1, {m}21634)−V G

0
(p2, p2,−p1, {m}12543)

]

, (391)

V H

12
=

1

p2
2

(UH

1 − p12 V H

11
), V H

21
=

1

p2
1

(UH

2 − p12 V H

22
). (392)

VH

22i
For rank two tensors (see Section 9.6.2) we introduce a vector UH

22
with components

UH

22 ; 1
= −

1

2

[

−V H

22
− V G

11
(−p2,−p2, p1, {m}12543) + V G

12
(−p2,−p2, p1, {m}12543)

+ V G

21
(−p2,−p2, p1, {m}12543) − V G

22
(−p2,−p2, p1, {m}12543) − V G

11
(p2, p2,−p1, {m}21634)

+ V G

12
(p2, p2,−p1, {m}21634) + V G

21
(p2, p2,−p1, {m}21634) − V G

22
(p2, p2,−p1, {m}21634)

]

,

UH

22 ; 2
= −

1

2

[

2 V H

0
+ V H

21
l156 + 2 V H

224
(n − 1)

− V G

0
(p2, p2,−p1, {m}21634) − V G

12
(p2, p2,−p1, {m}21634) + V G

22
(p2, p2,−p1, {m}21634)

− V G

12
(−p2,−p2, p1, {m}12543) + V G

22
(−p2,−p2, p1, {m}12543)

]

; (393)

we obtain
(

V H

223

V H

222

)

= G−1 UH

22
, (394)

and also

p2
1 V H

221
= −V H

223
− V H

224
+

1

2

[

V G

0
(p2, p2,−p1, {m}21634) + V H

21
l156 − V G

12
(p2, p2,−p1, {m}21634)

− V G

12
(−p2,−p2, p1, {m}12543) + V G

22
(p2, p2,−p1, {m}21634) + V G

22
(−p2,−p2, p1, {m}12543)

]

,

V H

224
=

ω2

2

[

V
1,1|1,1|1,2

H + V
1,1|1,1|2,1

H + V
2,1|1,1|1,1

H + V
1,2|1,1|1,1

H

] ∣

∣

∣

n=6−ǫ
. (395)
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When indices are saturated we obtain

V H(0 |µ, µ) = −V H

0
+ V G

0
(p2, p2,−p1, {m}21634),

V H(0 | p1, p1) =
1

2

{

l156 (V H

21
p2
1 + V H

22
p12) + V G

0
(p2, p2,−p1, {m}21634) p2

1

− p1 · P
[

V G

12
(p2, p2,−p1, {m}21634) − V G

22
(p2, p2,−p1, {m}21634)

+ V G

12
(−p2,−p2, p1, {m}12543) − V G

22
(−p2,−p2, p1, {m}12543)

]

+ p12

[

V G

11
(p2, p2,−p1, {m}21634) − V G

21
(p2, p2,−p1, {m}21634)

+ V G

11
(−p2,−p2, p1, {m}12543) − V G

21
(−p2,−p2, p1, {m}12543)

]}

,

p2
1 V H(0 | p2, p2) =

1

2

{

−2 V H

0
D m2

5 + l156

[

V H

21
(−2 D + D1) + V H

22
D2

]

− 2 (n − 2)V H

224
D + V G

0
(p2, p2,−p1, {m}21634)D1

+ (2 D − D1 − D2)
[

V G

12
(p2, p2,−p1, {m}21634) − V G

22
(p2, p2,−p1, {m}21634)

+ V G

12
(−p2,−p2, p1, {m}12543) − V G

22
(−p2,−p2, p1, {m}12543)

]

+ D2

[

V G

11
(p2, p2,−p1, {m}21634) − V G

21
(p2, p2,−p1, {m}21634)

+ V G

11
(−p2,−p2, p1, {m}12543) − V G

21
(−p2,−p2, p1, {m}12543)

]}

,

V H(0 | p1, p2) =
1

2

{

l156 (V H

21
p12 + V H

22
p2
2) + V G

0
(p2, p2,−p1, {m}21634) p12

+ p2 · P
[

V G

22
(p2, p2,−p1, {m}21634) − V G

12
(p2, p2,−p1, {m}21634)

− V G

12
(−p2,−p2, p1, {m}12543) + V G

22
(−p2,−p2, p1, {m}12543)

]

+ p2
2

[

V G

11
(p2, p2,−p1, {m}21634) − V G

21
(p2, p2,−p1, {m}21634)

+ V G

11
(−p2,−p2, p1, {m}12543) − V G

21
(−p2,−p2, p1, {m}12543)

]}

. (396)

VH

11i
Introduce a vector UH

11
with components

UH

11 ; 1
= −

1

2

[

2 V H

114
(n − 1) + 2 V H

0
m2

1 + V H

12
l212

− V G

12
(p1, p1,−p2, {m}56234) − V G

0
(−P,−P,−p2, {m}34256) − V G

11
(−P,−P,−p2, {m}34256)

+ V G

21
(−P,−P,−p2, {m}34256) + V G

22
(p1, p1,−p2, {m}56234)

]

,

UH

11 ; 2
= −

1

2

[

−V H

11
l212 − V G

11
(p1, p1,−p2, {m}56234) + V G

21
(p1, p1,−p2, {m}56234)

− V G

22
(p1, p1,−p2, {m}56234) + V G

12
(p1, p1,−p2, {m}56234)

]

; (397)

we obtain
(

V H

111

V H

113

)

= G−1 UH

11
, (398)

and also

p2
2 V H

112
=

1

2

[

V H

12
l212 − 2 V H

113
p12 − 2 V H

114
+ V G

0
(−P,−P,−p2, {m}34256) − V G

11
(−P,−P,−p2, {m}34256)
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+ V G

21
(−P,−P,−p2, {m}34256) + V G

22
(p1, p1,−p2, {m}56234) − V G

12
(p1, p1,−p2, {m}56234)

]

. (399)

For saturated indices we obtain

V H(µ, µ | 0) = −V H

0
m2

1 + V G

0
(−P,−P,−p2, {m}34256),

p2
2 V H(p1, p1 | 0) =

1

2

{

2 (2 − n)D V H

114
− 2 V H

0
D m2

1

+ l212

[

V H

12
(−2 D + D1) + V H

11
D3

]

+ V G

0
(−P,−P,−p2, {m}34256)D1

+ (2 D − D1)
[

V G

11
(−P,−P,−p2, {m}34256) − V G

21
(−P,−P,−p2, {m}34256)

]

+ D3

[

V G

11
(p1, p1,−p2, {m}56234) − V G

21
(p1, p1,−p2, {m}56234)

]

+ (2 D − D1 − D3)
[

V G

12
(p1, p1,−p2, {m}56234) − V G

22
(p1, p1,−p2, {m}56234)

]}

,

V H(p2, p2 | 0) =
1

2

{

l212 (V H

12
p2
2 + V H

11
p12) + p2

2

[

V G

0
(−P,−P,−p2, {m}34256)

− V G

11
(−P,−P,−p2, {m}34256) + V G

21
(−P,−P,−p2, {m}34256)

]

+ p12

[

V G

11
(p1, p1,−p2, {m}56234) − V G

21
(p1, p1,−p2, {m}56234)

]

+ p2 · P
[

V G

22
(p1, p1,−p2, {m}56234) − V G

12
(p1, p1,−p2, {m}56234)

]}

,

V H(p1, p2, | 0) =
1

2

{

l212 (V H

12
p12 + V H

11
p2
1) + p12

[

V G

0
(−P,−P,−p2, {m}34256)

− V G

11
(−P,−P,−p2, {m}34256) + V G

21
(−P,−P,−p2, {m}34256)

]

+ p2
1

[

V G

11
(p1, p1,−p2, {m}56234) − V G

21
(p1, p1,−p2, {m}56234)

]

+ p1 · P
[

V G

22
(p1, p1,−p2, {m}56234) − V G

12
(p1, p1,−p2, {m}56234)

]}

. (400)

VH

12i
Introduce a vector UH

12
with components

UH

12 ; 1
= −

1

2

[

2 V H

124
− V H

11
l156 + V G

12
(p2, p2,−p1, {m}21634) + V G

12
(−p2,−p2, p1, {m}12543)

]

,

UH

12 ; 2
= −

1

2

[

−V H

21
l212 + V G

12
(p1, p1,−p2, {m}56234) − V G

11
(p1, p1,−p2, {m}56234)

− V G

0
(−P,−P,−p2, {m}34256)

]

; (401)

we obtain
(

V H

121

V H

123

)

= G−1 UH

12
, (402)

and also

D V H

122
=

1

2

{

−2 V H

124
p2
1 − V H

12
p12 l156 + V H

22
p2
1 l212

+ p2
1

[

V G

0
(−P,−P,−p2, {m}34256) + V G

21
(−P,−P,−p2, {m}34256) − V G

12
(p1, p1,−p2, {m}56234)

]

+ p12

[

V G

12
(p2, p2,−p1, {m}21634) − V G

11
(p2, p2,−p1, {m}21634) − V G

0
(p2, p2,−p1, {m}21634)

+ V G

12
(−p2,−p2, p1, {m}12543) − V G

11
(−p2,−p2, p1, {m}12543)

]}

,
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V H

124
=

ω2

2

[

V
1,1|1,1|1,2

H + V
1,1|1,1|2,1

H

] ∣

∣

∣

n=6−ǫ
. (403)

For tensors with saturated indices we have

V H(µ |µ) =
1

2

[

2 V H

124
(n − 2) + V H

11
l156 + V H

22
l212

− V G

12
(p1, p1,−p2, {m}56234) − V G

12
(p2, p2,−p1, {m}21634) − V G

12
(−p2,−p2, p1, {m}12543)

+ V G

0
(−P,−P,−p2, {m}34256) + V G

21
(−P,−P,−p2, {m}34256)

]

,

V H(p1 | p1) =
1

2

[

l156 (V H

11
p2
1 + V H

12
p12) + p12

[

V G

11
(p2, p2,−p1, {m}21634)

+ V G

0
(p2, p2,−p1, {m}21634) + V G

11
(−p2,−p2, p1, {m}12543)

]

− p1 · P
[

V G

12
(p2, p2,−p1, {m}21634) + V G

12
(−p2,−p2, p1, {m}12543)

]}

,

p2
1 V H(p2 | p2) =

1

2

[

l156 (V H

11
p2
12 + V H

12
D2) + V H

22
D l212 + D

[

V G

0
(−P,−P,−p2, {m}34256)

+ V G

21
(−P,−P,−p2, {m}34256) − V G

12
(p1, p1,−p2, {m}56234)

]

− (p2
12 + D2)

[

V G

12
(p2, p2,−p1, {m}21634) + V G

12
(−p2,−p2, p1, {m}12543)

]

+ D2

[

V G

11
(p2, p2,−p1, {m}21634) + V G

11
(−p2,−p2, p1, {m}12543)

+ V G

0
(p2, p2,−p1, {m}21634)

]}

,

V H(p1 | p2) = V H(p2 | p1) =
1

2

[

l156 (V H

11
p12 + V H

12
p2
2) + p2

2

[

V G

11
(p2, p2,−p1, {m}21634)

+ V G

0
(p2, p2,−p1, {m}21634) + V G

11
(−p2,−p2, p1, {m}12543)

]

− p2 · P
[

V G

12
(p2, p2,−p1, {m}21634) + V G

12
(−p2,−p2, p1, {m}12543)

]}

. (404)

B.7 Further reduction of rank two integrals

In this Section we collect all combinations of vector form factors that can be further reduced without
occurrence of inverse powers of Gram determinants. For each combination we list the equation where the
r.h.s. can be found.

p2
1 V E

21
+ p12 V E

22
, Eq.(134),

p2
1 V I

21
+ p12 V I

22
, p12 V I

21
+ p2

2 V I

22
, Eq.(160),

p2
1 V M

21
+ p12 V M

22
, p12 V M

21
+ p2

2 V M

22
, Eq.(179),

p2
1 V G

11
+ p12 V G

12
, p12 V G

21
+ p2

2 V G

22
, Eq.(201),

p1 · P V K

11
+ p2 · P V K

12
, p1 · P V K

21
+ p2 · P V K

22
, p2

1 V K

21
+ p12 V K

22
, Eq.(228),

p12 V H

11
+ p2

2 V H

12
, p2

1 V H

21
+ p12 V H

22
, Eq.(254).

Once again we stress that form factors are introduced with respect to a certain basis of vectors which is
fully specified by the corresponding list of arguments; therefore, form factors appearing in the reduction of
other form factors should be interpreted in the appropriate way. We have collected in Tab. 2 the bases for
expansion of tensor integrals occurring in the reduction procedure. A typical example is

V G(µ | 0; p1, p1,−p2, · · ·) = V G

11
(p1, p1,−p2, · · ·) p1µ − V G

12
(p1, p1,−p2, · · ·)Pµ,

V G(µ | 0;−P,−P,−p2, · · ·) = −V G

11
(−P,−P,−p2, · · ·)Pµ + V G

12
(−P,−P,−p2, · · ·) p1µ. (405)

When reducing recursively all symbols must be interpreted as referred to the appropriated basis, i.e.
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Family argument pfirst psecond

E p2 , P p1 p2

E p1 , P p2 p1

E 0 , P P 0
E 0 , p1 p1 0
E 0 , p2 p2 0
E −p2 , −P −p1 −p2

E 0 , −p1 −p1 0

I p1 , P p1 p2

I p2 , P p2 p1

I 0 , p1 0 p1

I 0 , P 0 P
I −p2 , −P −p2 −p1

I −P , −p2 −p2 −p1

I p1 , 0 p1 −p1

G p1 , p1 , P p1 p2

G P , P , p1 P −p2

G −P , −P ,−p2 −P p1

G P , P , 0 P −P
G p1 , p1 , −p2 p1 −P
G p2 , p2 , −p1 p2 −P
G −p2 , −p2 , p1 −p2 P

Table 2: The basis pfirst , psecond for expanding form factors occurring in the reduction of tensor integrals corresponding
to diagrams with a larger number of propagators. First entry is always the defyining representation. An example is
given in Eq.(405).

D = p2
first p2

second − (pfirst · psecond)
2, etc, (406)

(see Eq.(9)) where, at the first level of reduction, we always have pfirst = p1 and psecond = p2.

B.8 Reduction for rank three tensors

For rank three tensors the number of form factors and of contractions (tensors with saturated indices)
increases considerably and it is not convenient to write down all cases explicitly; we prefer to adopt a different
way of collecting the results. The reduction technique is based on two algorithms which we illustrate in the
case of the V M family.

A1. Contraction of tensor integrals with δµν and decomposition of tensors of lower rank

δµν

∫

dnq1

∫

dnq2
q2µ q2ν q2α

[1][2]M [3]M [4]M [5]M [6]M

=

∫

dnq1

∫

dnq2
q2α

[1][2]M [4]M [5]M [6]M
− m2

3

∫

dnq1

∫

dnq2
q2α

[1][2]M [3]M [4]M [5]M [6]M

=
π4

µ2ǫ

∑

i=1,2

[

V I

2i
− m2

3 V M

2i

]

piα =
∑

i=1,2

vM

222i
piα. (407)
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A2. Contraction of tensor integrals with with pµ
1 or pµ

2 (or Pµ) and decomposition of tensors of lower rank:
for instance we obtain

V M(0 | p1, ν, α) = vM

2223
p1ν p1α + vM

2224
p2ν p2α + vM

2225
{p1p2}να + vM

2226
δνα. (408)

The vM

i originate from the decomposition of a rank two tensor after using Eq.(173) and writing

2 q2 · p1 = [4]M − [3]M − p2
1 + m2

4 − m2
3, (409)

and after shifting the loop momenta in order to recover the standard form of diagrams with fewer propagators.
Therefore we have

V M

2224
p2
1 + V M

2223
p12 + 2 V M

2221
= vM

2223
, V M

2224
p2
1 + V M

2226
p12 = vM

2224
,

V M

2223
p2
1 + V M

2224
p12 + V M

2222
= vM

2225
, V M

2221
p2
1 + V M

2222
p12 = vM

2226
. (410)

The choice of contractions is limited by the request that the resulting scalar products be reducible. In
each case one obtains a system of equations for the rank three form factors to be solved in terms of lower
rank form factors and of generalized scalars. Decompositions of vector integrals are defined in Eq.(118),
Eq.(153), Eq.(174), Eq.(195), Eq.(223) and Eq.(252). Decompositions for rank two tensor integrals are
defined in Eq.(138), for V E, in Eq.(161) for V I , in Eq.(180) for V M , in Eq.(205), Eq.(210), Eq.(216) for V G,
in Eq.(232), Eq.(238), Eq.(243) for V K and in Eq.(256), Eq.(260), Eq.(265) for V H.

B.8.1 Contractions of rank three tensor integrals

In this Section we collect the results for all contractions of rank three tensors (with a Kronecker delta
functions or with an external momentum) that give rise to reducible scalar products. These definitions will
be used in Sects. B.8.3 – B.8.5 to construct tensors with three saturated indices and to build systems of
equations that can be solved for the corresponding form factors. First we define the relevant contractions,
once again those that are leading to reducible scalar products in the numerators:

• M family

V M(0 |µ, µ, ν) = vM

2221
p1ν + vM

2222
p2ν ,

V M(0 | p1, µ, ν) = vM

2223
p1µ p1ν + vM

2224
p2µ p2ν + vM

2225
{p1p2}µν + vM

2226
δµν ,

V M(0 | p2, µ, ν) = vM

2227
p1µ p1ν + vM

2228
p2µ p2ν + vM

2229
{p1p2}µν + vM

22210
δµν ,

V M(ν |µ, µ) = vM

1221
p1ν + vM

1222
p2ν ,

V M(µ | p1, ν) = vM

1223
p1µ p1ν + vM

1224
p2µ p2ν + vM

1225
{p1p2}µν + vM

1226
δµν ,

V M(µ | p2, ν) = vM

1227
p1µ p1ν + vM

1228
p2µ p2ν + vM

1229
{p1p2}µν + vM

12210
δµν ,

V M(µ |µ, ν) = vM

12211
p1ν + vM

12212
p2ν ,

V M(µ, µ | ν) = vM

1121
p1ν + vM

1122
p2ν ,

V M(µ, ν | p1) = vM

1123
p1µ p1ν + vM

1124
p2µ p2ν + vM

1125
{p1p2}µν + vM

1126
δµν ,

V M(µ, ν | p2) = vM

1127
p1µ p1ν + vM

1128
p2µ p2ν + vM

1129
{p1p2}µν + vM

11210
δµν ,

V M(µ, ν |µ) = vM

11211
p1ν + vM

11212
p2ν .

V M(µ, µ, ν | 0) = vM

1111
p1ν + vM

1112
p2ν , (411)

• K family
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V K(0 | ν, ν, µ) = vK

2221
p1µ + vK

2222
p2µ,

V K(0 | p1, µ, ν) = vK

2223
p1µ p1ν + vK

2224
p2µ p2ν + vK

2225
{p1p2}µν + vK

2226
δµν ,

V K(0 | p2, µ, ν) = vK

2227
p1µ p1ν + vK

2228
p2µ p2ν + vK

2229
{p1p2}µν + vK

22210
δµν ,

V K(ν, ν, µ | 0) = vK

1111
p1µ + vK

1112
p2µ,

V K(P, µ, ν | 0) = vK

1113
p1µ p1ν + vK

1114
p2µ p2ν + vK

1115
{p1p2}µν + vK

1116
δµν ,

V K(ν, ν |µ) = vK

1121
p1µ + vK

1122
p2µ,

V K(P, µ | ν) = vK

1123
p1µ p1ν + vK

1124
p2µ p2ν + vK

1125
p1µ p2ν + vK

1126
p1ν p2µ + vK

1127
δµν ,

V K(µ, ν | p1) = vK

1128
p1µ p1ν + vK

1129
p2µ p2ν + vK

11210
{p1p2}µν + vK

11211
δµν ,

V K(µ, ν | p2) = vK

11212
p1µ p1ν + vK

11213
p2µ p2ν + vK

11214
{p1p2}µν + vK

11215
δµν ,

V K(ν, µ | ν) = vK

11216
p1µ + vK

11217
p2µ,

V K(µ | ν, ν) = vK

1221
p1µ + vK

1222
p2µ,

V K(P |µ, ν) = vK

1223
p1µ p1ν + vK

1224
p2µ p2ν + vK

1225
{p1p2}µν + vK

1226
δµν ,

V K(µ | ν, p1) = vK

1227
p1µ p1ν + vK

1228
p2µ p2ν + vK

1229
p1µ p2ν + vK

12210
p1ν p2µ + vK

12211
δµν ,

V K(µ | ν, p2) = vK

12212
p1µ p1ν + vK

12213
p2µ p2ν + vK

12214
p1µ p2ν + vK

12215
p1ν p2µ + vK

12216
δµν ,

V K(ν | ν, µ) = vK

12217
p1µ + vK

12218
p2µ. (412)

• H family

V H(0 | ν, ν, µ) = vH

2221
p1µ + vH

2222
p2µ,

V H(0 | p1, µ, ν) = vH

2223
p1µ p1ν + vH

2224
p2µ p2ν + vH

2225
{p1p2}µν + vH

2226
δµν ,

V H(ν, ν, µ | 0) = vH

1111
p1µ + vH

1112
p2µ,

V H(p2, µ, ν | 0) = vH

1113
p1µ p1ν + vH

1114
p2µ p2ν + vH

1115
{p1p2}µν + vH

1116
δµν ,

V H(ν, ν |µ) = vH

1121
p1µ + vH

1122
p2µ,

V H(p2, µ | ν) = vH

1123
p1µ p1ν + vH

1124
p2µ p2ν + vH

1125
p1µ p2ν + vH

1126
p1ν p2µ + vH

1127
δµν ,

V H(µ, ν | p1) = vH

1128
p1µ p1ν + vH

1129
p2µ p2ν + vH

11210
{p1p2}µν + vH

11211
δµν ,

V H(µ | ν, ν) = vH

1221
p1µ + vH

1222
p2µ,

V H(p2 |µ, ν) = vH

1223
p1µ p1ν + vH

1224
p2µ p2ν + vH

1225
{p1p2}µν + vH

1226
δµν ,

V H(µ | ν, p1) = vH

1227
p1µ p1ν + vH

1228
p2µ p2ν + vH

1229
p1µ p2ν + vH

12210
p1ν p2µ + vH

12211
δµν . (413)

B.8.2 Evaluation of contracted rank three tensor integrals

Successively all contractions of Eqs.(411)–(413) are expressed as linear combinations of form factors of lower
rank. These relations can be used as they stand or we can insert, recursively, results for rank two and rank
one form factors (listed in Sects. B.1 – B.6) until one reaches a result which is written in terms of scalar
integrals only.

• M family Eq.(411)

vM

222i
= −m2

3 V M

2i
+ V I

2i
(p1, P, {m}12345), i = 1, 2
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vM

222 i+2
=

1

2

[

−l134 V M

22i
− V I

22i
(p1, P, {m}12345) + V I

222
(0, P, {m}12335)

]

, i = 1 · · · 3,

vM

2226
=

1

2

[

−l134 V M

224
− V I

224
(p1, P, {m}12345) + V I

224
(0, P, {m}12335)

]

,

vM

2227
=

1

2

[

(l134 − lP35)V M

221
− V I

222
(0, P, {m}12335) + V I

221
(p1, 0, {m}12343) + V I

222
(p1, 0, {m}12343)

− 2 V I

223
(p1, P, {m}12343)

]

,

vM

222 i+6
=

1

2

[

(l134 − lP35)V M

22i
− V I

222
(0, P, {m}12335)

]

, i = 2, 3,

vM

22210
=

1

2

[

(l134 − lP35)V M

224
+ V I

224
(p1, 0, {m}12343) − V I

224
(0, P, {m}12335)

]

, (414)

vM

111i
= −m2

1 V M

1i
− A0(m2)C1i(2, 1, 1 ; p1, p2, {m}345), i = 1, 2, (415)

vM

112i
= −m2

1 V M

2i
− A0(m2)C1i(2, 1, 1 ; p1, p2, {m}345), i = 1, 2,

vM

112 i+2
=

1

2

[

−l134 V M

11i
− V I

11i
(p1, P, {m}12345) + V I

112
(0, P, {m}12335)

]

, i = 1 · · · 3,

vM

1126
=

1

2

[

−l134 V M

114
− V I

114
(p1, P, {m}12345) + V I

114
(0, P, {m}12335)

]

,

vM

1127
=

1

2

[

(l134 − lP35)V M

111
− V I

112
(0, P, {m}12335) + V I

111
(p1, 0, {m}12343) + V I

112
(p1, 0, {m}12343)

− 2 V I

111
(p1, 0, {m}12343)

]

,

vM

112 i+6
=

1

2

[

(l134 − lP35)V M

11i
− V I

112
(0, P, {m}12335)

]

, i = 2, 3,

vM

11210
=

1

2

[

(l134 − lP35)V M

114
− V I

114
(0, P, {m}12335) + V I

114
(p1, 0, {m}12343)

]

,

vM

112 i+10
=

1

2

[

−m2
123 V M

1i
+ V I

1i
(p1, P, {m}12345) − A0(m2)C1i(2, 1, 1 ; p1, p2, {m}345)

]

, i = 1, 2, (416)

vM

122i
= −m2

3 V M

1i
+ V I

1i
(p1, P, {m}12345), i = 1, 2,

vM

122 i+2
=

1

2

[

−l134 V M

12i
− V I

12i
(p1, P, {m}12345) + V I

122
(0, P, {m}12335)

]

, i = 1 · · · 3,

vM

1226
=

1

2

[

−l134 V M

124
− V I

124
(p1, P, {m}12345) + V I

124
(0, P, {m}12335)

]

,

vM

1227
=

1

2

[

(l134 − lP35)V M

121
− V I

122
(0, P, {m}12335) + V I

121
(p1, 0, {m}12343) + V I

122
(p1, 0, {m}12343)

− 2 V I

123
(p1, 0, {m}12343)

]

,

vM

122 i+6
=

1

2

[

(l134 − lP35)V M

12i
− V I

122
(0, P, {m}12335)

]

, i = 2, 3,

vM

12210
=

1

2

[

(l134 − lP35)V M

124
+ V I

124
(p1, 0, {m}12343) − V I

124
(0, P, {m}12335)

]

,

vM

122 i+10
=

1

2

[

m2
123 V M

2i
+ V I

2i
(p1, P, {m}12345) + A0([m1, m2])C1i(2, 1, 1 ; p1, p2, {m}345)

]

, i = 1, 2.(417)

Furthermore we define

vM

1113
= 36 ω6 V

1|2,4,1|4
M

∣

∣

∣

n=10−ǫ
, vM

1114
= 12 ω6 V

1|2,3,2|4
M

∣

∣

∣

n=10−ǫ
,

vM

1115
= 12 ω6 V

1|2,2,3|4
M

∣

∣

∣

n=10−ǫ
, vM

1116
= 36 ω6 V

1|2,1,4|4
M

∣

∣

∣

n=10−ǫ
. (418)
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• K family Eq.(412)

vK

2221
= −V K

21
m2

4 + V G

21
(P, P, p1, {m}12365),

vK

2222
= −V K

22
m2

4 + V G

21
(P, P, p1, {m}12365) − V G

22
(P, P, p1, {m}12365),

vK

2223
=

1

2

[

−V K

221
l145 − V G

221
(P, P, p1, {m}12365) + V G

221
(P, P, 0, {m}12364)

+ V G

222
(P, P, 0, {m}12364) − 2 V G

223
(P, P, 0, {m}12364)

]

,

vK

2224
=

1

2

[

−V K

222
l145 − V G

221
(P, P, p1, {m}12365) + V G

221
(P, P, 0, {m}12364)

− V G

222
(P, P, p1, {m}12365) + V G

222
(P, P, 0, {m}12364) + 2 V G

223
(P, P, p1, {m}12365)

− 2 V G

223
(P, P, 0, {m}12364)

]

,

vK

2225
=

1

2

[

−V K

223
l145 − V G

221
(P, P, p1, {m}12365) + V G

221
(P, P, 0, {m}12364)

+ V G

222
(P, P, 0, {m}12364) + V G

223
(P, P, p1, {m}12365) − 2 V G

223
(P, P, 0, {m}12364)

]

,

vK

2226
=

1

2

[

−V K

22
4 l145 − V G

224
(P, P, p1, {m}12365) + V G

224
(P, P, 0, {m}12364)

]

,

vK

2227
=

1

2

[

V K

221
(l165 − P 2) − V G

221
(P, P, 0, {m}12364)

+ V G

221
(−P,−P,−p2, {m}21345) − V G

222
(P, P, 0, {m}12364) + V G

222
(−P,−P,−p2, {m}21345)

+ 2 V G

223
(P, P, 0, {m}12364) − 2 V G

223
(−P,−P,−p2, {m}21345) + 2 V G

21
(−P,−P,−p2, {m}21345)

− 2 V G

22
(−P,−P,−p2, {m}21345) + V G

0
(−P,−P,−p2, {m}21345)

]

,

vK

2228
=

1

2

[

V K

222
(l165 − P 2) − V G

221
(P, P, 0, {m}12364)

+ V G

221
(−P,−P,−p2, {m}21345) − V G

222
(P, P, 0, {m}12364) + 2 V G

223
(P, P, 0, {m}12364)

+ 2 V G

21
(−P,−P,−p2, {m}21345) + V G

0
(−P,−P,−p2, {m}21345)

]

,

vK

2229
=

1

2

[

V K

223
(l165 − P 2) − V G

221
(P, P, 0, {m}12364) + V G

221
(−P,−P,−p2, {m}21345)

− V G

222
(P, P, 0, {m}12364) + 2 V G

223
(P, P, 0, {m}12364) − V G

223
(−P,−P,−p2, {m}21345)

+ 2 V G

21
(−P,−P,−p2, {m}21345) − V G

22
(−P,−P,−p2, {m}21345) + V G

0
(−P,−P,−p2, {m}21345)

]

,

vK

22210
=

1

2

[

V K

224
(l165 − P 2) − V G

224
(P, P, 0, {m}12364) + V G

224
(−P,−P,−p2, {m}21345)

]

, (419)

vK

1111
= −V K

11
m2

1 − V I

12
(−p2,−P, {m}23654) − V I

0
(−p2,−P, {m}23654),

vK

1112
= −V K

12
m2

1 − V I

11
(−p2,−P, {m}23654) − V I

0
(−p2,−P, {m}23654),

vK

1113
=

1

2

[

−V K

111
lP12 + V I

111
(p1, P, {m}13456) − V I

112
(−p2,−P, {m}23654)

− 2 V I

12
(−p2,−P, {m}23654) − V I

0
(−p2,−P, {m}23654)

]

,

vK

1114
=

1

2

[

−V K

112
lP12 − V I

111
(−p2,−P, {m}23654) + V I

112
(p1, P, {m}13456)

− 2 V I

11
(−p2,−P, {m}23654) − V I

0
(−p2,−P, {m}23654)

]

,

vK

1115
=

1

2

[

−V K

113
lP12 + V I

113
(p1, P, {m}13456) − V I

113
(−p2,−P, {m}23654)

− V I

11
(−p2,−P, {m}23654) − V I

12
(−p2,−P, {m}23654) − V I

0
(−p2,−P, {m}23654)

]

,
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vK

1116
=

1

2

[

−V K

114
lP12 + V I

114
(p1, P, {m}13456) − V I

114
(−p2,−P, {m}23654)

]

, (420)

vK

1121
= −V K

21
m2

1 − V I

22
(−p2,−P, {m}23654) − V I

0
(−p2,−P, {m}23654),

vK

1122
= −V K

22
m2

1 − V I

21
(−p2,−P, {m}23654) − V I

0
(−p2,−P, {m}23654),

vK

1123
=

1

2

[

−V K

121
lP12 + V I

121
(p1, P, {m}13456) − V I

122
(−p2,−P, {m}23654)

− V I

22
(−p2,−P, {m}23654) − V I

12
(−p2,−P, {m}23654) − V I

0
(−p2,−P, {m}23654)

]

,

vK

1124
=

1

2

[

−V K

122
lP12 − V I

121
(−p2,−P, {m}23654) + V I

122
(p1, P, {m}13456)

− V I

21
(−p2,−P, {m}23654) − V I

11
(−p2,−P, {m}23654) − V I

0
(−p2,−P, {m}23654)

]

,

vK

1125
=

1

2

[

−V K

123
lP12 + V I

123
(p1, P, {m}13456) − V I

125
(−p2,−P, {m}23654)

− V I

21
(−p2,−P, {m}23654) − V I

12
(−p2,−P, {m}23654) − V I

0
(−p2,−P, {m}23654)

]

,

vK

1126
=

1

2

[

−V K

125
lP12 − V I

123
(−p2,−P, {m}23654) + V I

125
(p1, P, {m}13456)

− V I

22
(−p2,−P, {m}23654) − V I

11
(−p2,−P, {m}23654) − V I

0
(−p2,−P, {m}23654)

]

,

vK

1127
=

1

2

[

−V K

124
lP12 + V I

124
(p1, P, {m}13456) − V I

124
(−p2,−P, {m}23654)

]

,

vK

1128
=

1

2

[

−V K

111
l145 − V G

111
(P, P, p1, {m}12365) + V G

111
(P, P, 0, {m}12364)

+ V G

112
(P, P, 0, {m}12364) − 2 V G

113
(P, P, 0, {m}12364)

]

,

vK

1129
=

1

2

[

−V K

112
l145 − V G

111
(P, P, p1, {m}12365) + V G

111
(P, P, 0, {m}12364)

− V G

112
(P, P, p1, {m}12365) + V G

112
(P, P, 0, {m}12364) + 2 V G

113
(P, P, p1, {m}12365)

− 2 V G

113
(P, P, 0, {m}12364)

]

,

vK

11210
=

1

2

[

−V K

113
l145 − V G

111
(P, P, p1, {m}12365) + V G

111
(P, P, 0, {m}12364)

+ V G

112
(P, P, 0, {m}12364) + V G

113
(P, P, p1, {m}12365) − 2 V G

113
(P, P, 0, {m}12364)

]

,

vK

11211
=

1

2

[

−V K

114
l145 − V G

114
(P, P, p1, {m}12365) + V G

114
(P, P, 0, {m}12364)

]

,

vK

11212
=

1

2

[

V K

111
(l165 − P 2) − V G

111
(P, P, 0, {m}12364) + V G

111
(−P,−P,−p2, {m}21345)

− V G

112
(P, P, 0, {m}12364) + V G

112
(−P,−P,−p2, {m}21345) + 2 V G

113
(P, P, 0, {m}12364)

− 2 V G

113
(−P,−P,−p2, {m}21345) + 2 V G

11
(−P,−P,−p2, {m}21345) − 2 V G

12
(−P,−P,−p2, {m}21345)

+ V G

0
(−P,−P,−p2, {m}21345)

]

,

vK

11213
=

1

2

[

V K

112
(l165 − P 2) − V G

111
(P, P, 0, {m}12364) + V G

111
(−P,−P,−p2, {m}21345)

− V G

112
(P, P, 0, {m}12364) + 2 V G

113
(P, P, 0, {m}12364) + 2 V G

11
(−P,−P,−p2, {m}21345)

+ V G

0
(−P,−P,−p2, {m}21345)

]

,

vK

11214
=

1

2

[

V K

113
(l165 − P 2) − V G

111
(P, P, 0, {m}12364) + V G

111
(−P,−P,−p2, {m}21345)

− V G

112
(P, P, 0, {m}12364) + 2 V G

113
(P, P, 0, {m}12364) − V G

113
(−P,−P,−p2, {m}21345)
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+ 2 V G

11
(−P,−P,−p2, {m}21345) − V G

12
(−P,−P,−p2, {m}21345) + V G

0
(−P,−P,−p2, {m}21345)

]

,

vK

11215
=

1

2

[

V K

114
(l165 − P 2) − V G

114
(P, P, 0, {m}12364) + V G

114
(−P,−P,−p2, {m}21345)

]

,

vK

11216
=

1

2

[

−V K

11
m2

134 + V G

11
(P, P, p1, {m}12365) − V I

12
(−p2,−P, {m}23654)

+ B1(P, {m}12)C0(p1, p2, {m}456) − V I

0
(−p2,−P, {m}23654)

]

,

vK

11217
=

1

2

[

−V K

12
m2

134 + V G

11
(P, P, p1, {m}12365) − V G

12
(P, P, p1, {m}12365)

− V I

11
(−p2,−P, {m}23654) + B1(P, {m}12)C0(p1, p2, {m}456) − V I

0
(−p2,−P, {m}23654)

]

, (421)

vK

1221
= −V K

11
m2

4 + V G

11
(P, P, p1, {m}12365),

vK

1222
= −V K

12
m2

4 + V G

11
(P, P, p1, {m}12365) − V G

12
(P, P, p1, {m}12365),

vK

1223
=

1

2

[

−V K

221
lP12 + V I

221
(p1, P, {m}13456) − V I

222
(−p2,−P, {m}23654)

− 2 V I

22
(−p2,−P, {m}23654) − V I

0
(−p2,−P, {m}23654)

]

,

vK

1224
=

1

2

[

−V K

222
lP12 − V I

221
(−p2,−P, {m}23654) + V I

222
(p1, P, {m}13456)

− 2 V I

21
(−p2,−P, {m}23654) − V I

0
(−p2,−P, {m}23654)

]

,

vK

1225
=

1

2

[

−V K

223
lP12 + V I

223
(p1, P, {m}13456) − V I

223
(−p2,−P, {m}23654)

− V I

21
(−p2,−P, {m}23654) − V I

22
(−p2,−P, {m}23654) − V I

0
(−p2,−P, {m}23654)

]

,

vK

1226
=

1

2

[

−V K

224
lP12 + V I

224
(p1, P, {m}13456) − V I

224
(−p2,−P, {m}23654)

]

,

vK

1227
=

1

2

[

−V K

121
l145 − V G

121
(P, P, p1, {m}12365) + V G

121
(P, P, 0, {m}12364)

+ V G

122
(P, P, 0, {m}12364) − V G

123
(P, P, 0, {m}12364) − V G

125
(P, P, 0, {m}12364)

]

,

vK

1228
=

1

2

[

−V K

122
l145 − V G

121
(P, P, p1, {m}12365) + V G

121
(P, P, 0, {m}12364)

− V G

122
(P, P, p1, {m}12365) + V G

122
(P, P, 0, {m}12364) + V G

123
(P, P, p1, {m}12365)

− V G

123
(P, P, 0, {m}12364) + V G

125
(P, P, p1, {m}12365) − V G

125
(P, P, 0, {m}12364)

]

,

vK

1229
=

1

2

[

−V K

123
l145 − V G

121
(P, P, p1, {m}12365) + V G

121
(P, P, 0, {m}12364)

+ V G

122
(P, P, 0, {m}12364) + V G

123
(P, P, p1, {m}12365) − V G

123
(P, P, 0, {m}12364)

− V G

125
(P, P, 0, {m}12364)

]

,

vK

12210
=

1

2

[

−V K

125
l145 − V G

121
(P, P, p1, {m}12365) + V G

121
(P, P, 0, {m}12364) + V G

122
(P, P, 0, {m}12364)

− V G

123
(P, P, 0, {m}12364) + V G

125
(P, P, p1, {m}12365) − V G

125
(P, P, 0, {m}12364)

]

,

vK

12211
=

1

2

[

−V K

124
l145 − V G

124
(P, P, p1, {m}12365) + V G

124
(P, P, 0, {m}12364)

]

,

vK

12212
=

1

2

[

V K

121
(l165 − P 2) − V G

121
(P, P, 0, {m}12364) + V G

121
(−P,−P,−p2, {m}21345)

− V G

122
(P, P, 0, {m}12364) + V G

122
(−P,−P,−p2, {m}21345) + V G

123
(P, P, 0, {m}12364)

− V G

123
(−P,−P,−p2, {m}21345) + V G

125
(P, P, 0, {m}12364) − V G

125
(−P,−P,−p2, {m}21345)
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+ V G

21
(−P,−P,−p2, {m}21345) − V G

22
(−P,−P,−p2, {m}21345) + V G

11
(−P,−P,−p2, {m}21345)

− V G

12
(−P,−P,−p2, {m}21345) + V G

0
(−P,−P,−p2, {m}21345)

]

,

vK

12213
=

1

2

[

V K

122
(l165 − P 2) − V G

121
(P, P, 0, {m}12364) + V G

121
(−P,−P,−p2, {m}21345)

− V G

122
(P, P, 0, {m}12364) + V G

123
(P, P, 0, {m}12364) + V G

125
(P, P, 0, {m}12364)

+ V G

21
(−P,−P,−p2, {m}21345) + V G

11
(−P,−P,−p2, {m}21345) + V G

0
(−P,−P,−p2, {m}21345)

]

,

vK

12214
=

1

2

[

V K

123
(l165 − P 2) − V G

121
(P, P, 0, {m}12364) + V G

121
(−P,−P,−p2, {m}21345)

− V G

122
(P, P, 0, {m}12364) + V G

123
(P, P, 0, {m}12364) + V G

125
(P, P, 0, {m}12364)

− V G

125
(−P,−P,−p2, {m}21345) + V G

21
(−P,−P,−p2, {m}21345) + V G

11
(−P,−P,−p2, {m}21345)

− V G

12
(−P,−P,−p2, {m}21345) + V G

0
(−P,−P,−p2, {m}21345)

]

,

vK

12215
=

1

2

[

V K

125
(l165 − P 2) − V G

121
(P, P, 0, {m}12364) + V G

121
(−P,−P,−p2, {m}21345)

− V G

122
(P, P, 0, {m}12364) + V G

123
(P, P, 0, {m}12364) − V G

123
(−P,−P,−p2, {m}21345)

+ V G

125
(P, P, 0, {m}12364) + V G

21
(−P,−P,−p2, {m}21345) − V G

22
(−P,−P,−p2, {m}21345)

+ V G

11
(−P,−P,−p2, {m}21345) + V G

0
(−P,−P,−p2, {m}21345)

]

,

vK

12216
=

1

2

[

V K

124
(l165 − P 2) − V G

124
(P, P, 0, {m}12364) + V G

124
(−P,−P,−p2, {m}21345)

]

,

vK

12217
=

1

2

[

−V K

21
m2

134 + V G

21
(P, P, p1, {m}12365) − V I

22
(−p2,−P, {m}23654)

+ B0(P, {m}12)C11(p1, p2, {m}456) − V I

0
(−p2,−P, {m}23654)

]

,

vK

12218
=

1

2

[

−V K

22
m2

134 + V G

21
(P, P, p1, {m}12365) − V G

22
(P, P, p1, {m}12365)

− V I

21
(−p2,−P, {m}23654) + B0(P, {m}12)C12(p1, p2, {m}456) − V I

0
(−p2,−P, {m}23654)

]

. (422)

• H family Eq.(412)

It is convenient to define certain combinations of form factors to be used in this family (they only appear in
the present subsection):

V I

Ai
= V I

11i
+ V I

22i
− 2 V I

12i
, V I

Bi
= V I

1i
+ V I

2i
, V G

Ai
= V G

11i
− V G

12i
, V G

Bi
= V G

22i
− V G

12i
,

V G

Ci
= V G

1i
− V G

2i
, V G

12A
= V G

125
− V G

123
. (423)

We obtain

vH

2221
= −V H

21
m2

5 + V G

0
(p2, p2,−p1, {m}21634) − V G

C2
(p2, p2,−p1, {m}21634),

vH

2222
= −V H

22
m2

5 + V G

C1
(p2, p2,−p1, {m}21634) − V G

C2
(p2, p2,−p1, {m}21634),

vH

2223
=

1

2

[

V H

221
(2 p2

1 − l165) + V G

0
(p2, p2,−p1, {m}21634) + V G

A2
(p2, p2,−p1, {m}21634)

− V G

A2
(−p2,−p2, p1, {m}12543) + V G

B2
(p2, p2,−p1, {m}21634) − V G

B2
(−p2,−p2, p1, {m}12543)

− 2 V G

C2
(p2, p2,−p1, {m}21634)

]

,

vH

2224
=

1

2

[

V H

222
(2 p2

1 − l165) + V G

A1
(p2, p2,−p1, {m}21634) − V G

A1
(−p2,−p2, p1, {m}12543)

+ V G

B1
(p2, p2,−p1, {m}21634) − V G

B1
(−p2,−p2, p1, {m}12543) + V G

A2
(p2, p2,−p1, {m}21634)

− V G

A2
(−p2,−p2, p1, {m}12543) + V G

B2
(p2, p2,−p1, {m}21634) − V G

B2
(−p2,−p2, p1, {m}12543)

− 2 V G

A3
(p2, p2,−p1, {m}21634) + 2 V G

A3
(−p2,−p2, p1, {m}12543) − 2 V G

B3
(p2, p2,−p1, {m}21634)
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+ 2 V G

B3
(−p2,−p2, p1, {m}12543) + 2 V G

12A
(p2, p2,−p1, {m}21634) − 2 V G

12A
(−p2,−p2, p1, {m}12543)

]

,

vH

2225
=

1

2

[

V H

223
(2 p2

1 − l165) + V G

C1
(p2, p2,−p1, {m}21634) + V G

A2
(p2, p2,−p1, {m}21634)

− V G

A2
(−p2,−p2, p1, {m}12543) + V G

B2
(p2, p2,−p1, {m}21634) − V G

B2
(−p2,−p2, p1, {m}12543)

− V G

C2
(p2, p2,−p1, {m}21634) − V G

A3
(p2, p2,−p1, {m}21634) + V G

A3
(−p2,−p2, p1, {m}12543)

− V G

B3
(p2, p2,−p1, {m}21634) + V G

B3
(−p2,−p2, p1, {m}12543) + V G

12A
(p2, p2,−p1, {m}21634)

− V G

12A
(−p2,−p2, p1, {m}12543)

]

,

vH

2226
=

1

2

[

V H

224
(2 p2

1 − l165) + V G

A4
(p2, p2,−p1, {m}21634) − V G

A4
(−p2,−p2, p1, {m}12543)

+ V G

B4
(p2, p2,−p1, {m}21634) − V G

B4
(−p2,−p2, p1, {m}12543)

]

, (424)

vH

1111
= −V H

11
m2

1 − V G

C1
(P, P, p2, {m}34256) + V G

C2
(P, P, p2, {m}34256),

vH

1112
= −V H

12
m2

1 + V G

0
(P, P, p2, {m}34256) − V G

C1
(P, P, p2, {m}34256),

vH

1113
=

1

2

[

V H

111
l212 + V G

A1
(P, P, p2, {m}34256) − V G

A1
(−P,−P,−p2, {m}21345)

+ V G

B1
(P, P, p2, {m}34256) − V G

B1
(−P,−P,−p2, {m}21345) + V G

A2
(P, P, p2, {m}34256)

− V G

A2
(−P,−P,−p2, {m}21345) + V G

B2
(P, P, p2, {m}34256) − V G

B2
(−P,−P,−p2, {m}21345)

− 2 V G

A3
(P, P, p2, {m}34256) + 2 V G

A3
(−P,−P,−p2, {m}21345) − 2 V G

B3
(P, P, p2, {m}34256)

+ 2 V G

B3
(−P,−P,−p2, {m}21345) + 2 V G

12A
(P, P, p2, {m}34256) − 2 V G

12A
(−P,−P,−p2, {m}21345)

]

,

vH

1114
=

1

2

[

V H

112
l212 + V G

0
(P, P, p2, {m}34256) + V G

A1
(P, P, p2, {m}34256)

− V G

A1
(−P,−P,−p2, {m}21345) + V G

B1
(P, P, p2, {m}34256) − V G

B1
(−P,−P,−p2, {m}21345)

− 2 V G

C1
(P, P, p2, {m}34256)

]

,

vH

1115
=

1

2

[

V H

113
l212 + V G

A1
(P, P, p2, {m}34256) − V G

A1
(−P,−P,−p2, {m}21345)

+ V G

B1
(P, P, p2, {m}34256) − V G

B1
(−P,−P,−p2, {m}21345) − V G

C1
(P, P, p2, {m}34256)

+ V G

C2
(P, P, p2, {m}34256) − V G

A3
(P, P, p2, {m}34256) + V G

A3
(−P,−P,−p2, {m}21345)

− V G

B3
(P, P, p2, {m}34256) + V G

B3
(−P,−P,−p2, {m}21345) + V G

12A
(P, P, p2, {m}34256)

− V G

12A
(−P,−P,−p2, {m}21345)

]

,

vH

1116
=

1

2

[

V H

114
l212 + V G

A4
(P, P, p2, {m}34256) − V G

A4
(−P,−P,−p2, {m}21345)

+ V G

B4
(P, P, p2, {m}34256) − V G

B4
(−P,−P,−p2, {m}21345)

]

, (425)

vH

1121
= −V H

21
m2

1 + V G

21
(P, P, p2, {m}34256) − V G

22
(P, P, p2, {m}34256) + V G

0
(P, P, p2, {m}34256),

vH

1122
= −V H

22
m2

1 + V G

21
(P, P, p2, {m}34256) + V G

0
(P, P, p2, {m}34256),

vH

1123
=

1

2

[

V H

121
l212 + V G

B1
(P, P, p2, {m}34256) − V G

B1
(−P,−P,−p2, {m}21345)

− V G

C1
(P, P, p2, {m}34256) + V G

B2
(P, P, p2, {m}34256) − V G

B2
(−P,−P,−p2, {m}21345)

+ V G

C2
(P, P, p2, {m}34256) − 2 V G

B3
(P, P, p2, {m}34256) + 2 V G

B3
(−P,−P,−p2, {m}21345)

+ V G

12A
(P, P, p2, {m}34256) − V G

12A
(−P,−P,−p2, {m}21345)

]

,

vH

1124
=

1

2

[

V H

122
l212 + V G

21
(P, P, p2, {m}34256) + V G

0
(P, P, p2, {m}34256)
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+ V G

B1
(P, P, p2, {m}34256) − V G

B1
(−P,−P,−p2, {m}21345) − V G

C1
(P, P, p2, {m}34256)

+ V G

C1
(−P,−P,−p2, {m}21345)

]

,

vH

1125
=

1

2

[

V H

123
l212 + V G

B1
(P, P, p2, {m}34256) − V G

B1
(−P,−P,−p2, {m}21345)

− V G

C1
(P, P, p2, {m}34256) + V G

C1
(−P,−P,−p2, {m}21345) + V G

C2
(P, P, p2, {m}34256)

− V G

C2
(−P,−P,−p2, {m}21345) − V G

B3
(P, P, p2, {m}34256) + V G

B3
(−P,−P,−p2, {m}21345)

+ V G

12A
(P, P, p2, {m}34256) − V G

12A
(−P,−P,−p2, {m}21345)

]

,

vH

1126
=

1

2

[

V H

125
l212 + V G

21
(P, P, p2, {m}34256) − V G

22
(P, P, p2, {m}34256)

+ V G

0
(P, P, p2, {m}34256) + V G

B1
(P, P, p2, {m}34256) − V G

B1
(−P,−P,−p2, {m}21345)

− V G

C1
(P, P, p2, {m}34256) − V G

B3
(P, P, p2, {m}34256) + V G

B3
(−P,−P,−p2, {m}21345)

]

,

vH

1127
=

1

2

[

V H

124
l212 + V G

B4
(P, P, p2, {m}34256) − V G

B4
(−P,−P,−p2, {m}21345)

]

,

vH

1128
=

1

2

[

V H

111
(2 p2

1 − l165) + V G

122
(p2, p2,−p1, {m}21634) − V G

122
(−p2,−p2, p1, {m}12543)

+ V G

A2
(p2, p2,−p1, {m}21634) − V G

A2
(−p2,−p2, p1, {m}12543)

]

,

vH

1129
=

1

2

[

V H

112
(2 p2

1 − l165) + V G

121
(p2, p2,−p1, {m}21634) − V G

121
(−p2,−p2, p1, {m}12543)

+ V G

122
(p2, p2,−p1, {m}21634) − V G

122
(−p2,−p2, p1, {m}12543) − 2 V G

123
(p2, p2,−p1, {m}21634)

+ 2 V G

123
(−p2,−p2, p1, {m}12543) + 2 V G

21
(p2, p2,−p1, {m}21634) − 2 V G

22
(p2, p2,−p1, {m}21634)

+ V G

0
(p2, p2,−p1, {m}21634) + V G

A1
(p2, p2,−p1, {m}21634) − V G

A1
(−p2,−p2, p1, {m}12543)

+ 2 V G

C1
(p2, p2,−p1, {m}21634) + V G

A2
(p2, p2,−p1, {m}21634) − V G

A2
(−p2,−p2, p1, {m}12543)

− 2 V G

C2
(p2, p2,−p1, {m}21634) − 2 V G

A3
(p2, p2,−p1, {m}21634) + 2 V G

A3
(−p2,−p2, p1, {m}12543)

]

,

vH

11210
=

1

2

[

V H

113
(2 p2

1 − l165) + V G

122
(p2, p2,−p1, {m}21634) − V G

122
(−p2,−p2, p1, {m}12543)

− V G

123
(p2, p2,−p1, {m}21634) + V G

123
(−p2,−p2, p1, {m}12543) − V G

22
(p2, p2,−p1, {m}21634)

+ V G

A2
(p2, p2,−p1, {m}21634) − V G

A2
(−p2,−p2, p1, {m}12543) − V G

C2
(p2, p2,−p1, {m}21634)

− V G

A3
(p2, p2,−p1, {m}21634) + V G

A3
(−p2,−p2, p1, {m}12543)

]

,

vH

11211
=

1

2

[

V H

114
(2 p2

1 − l165) + V G

124
(p2, p2,−p1, {m}21634) − V G

124
(−p2,−p2, p1, {m}12543)

+ V G

A4
(p2, p2,−p1, {m}21634) − V G

A4
(−p2,−p2, p1, {m}12543)

]

, (426)

vH

1221
= −V H

11
m2

5 − V G

22
(p2, p2,−p1, {m}21634) − V G

C2
(p2, p2,−p1, {m}21634),

vH

1222
= −V H

12
m2

5 + V G

21
(p2, p2,−p1, {m}21634) − V G

22
(p2, p2,−p1, {m}21634)

+ V G

0
(p2, p2,−p1, {m}21634) + V G

C1
(p2, p2,−p1, {m}21634) − V G

C2
(p2, p2,−p1, {m}21634),

vH

1223
=

1

2

[

V H

221
l212 + V G

121
(P, P, p2, {m}34256) − V G

121
(−P,−P,−p2, {m}21345)

+ V G

122
(P, P, p2, {m}34256) − V G

122
(−P,−P,−p2, {m}21345) − 2 V G

123
(P, P, p2, {m}34256)

+ 2 V G

123
(−P,−P,−p2, {m}21345) + 2 V G

21
(P, P, p2, {m}34256) − 2 V G

22
(P, P, p2, {m}34256)

+ V G

0
(P, P, p2, {m}34256) + V G

B1
(P, P, p2, {m}34256) − V G

B1
(−P,−P,−p2, {m}21345)

+ V G

B2
(P, P, p2, {m}34256) − V G

B2
(−P,−P,−p2, {m}21345) − 2 V G

B3
(P, P, p2, {m}34256)

+ 2 V G

B3
(−P,−P,−p2, {m}21345)

]

,
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vH

1224
=

1

2

[

V H

222
l212 + V G

121
(P, P, p2, {m}34256) − V G

121
(−P,−P,−p2, {m}21345)

+ 2 V G

21
(P, P, p2, {m}34256) − 2 V G

21
(−P,−P,−p2, {m}21345) + V G

0
(P, P, p2, {m}34256)

− V G

0
(−P,−P,−p2, {m}21345) + V G

B1
(P, P, p2, {m}34256) − V G

B1
(−P,−P,−p2, {m}21345)

]

,

vH

1225
=

1

2

[

V H

223
l212 + V G

121
(P, P, p2, {m}34256) − V G

121
(−P,−P,−p2, {m}21345)

− V G

123
(P, P, p2, {m}34256) + V G

123
(−P,−P,−p2, {m}21345) + 2 V G

21
(P, P, p2, {m}34256)

− V G

21
(−P,−P,−p2, {m}21345) − V G

22
(P, P, p2, {m}34256) + V G

22
(−P,−P,−p2, {m}21345)

+ V G

0
(P, P, p2, {m}34256) + V G

B1
(P, P, p2, {m}34256) − V G

B1
(−P,−P,−p2, {m}21345)

− V G

B3
(P, P, p2, {m}34256) + V G

B3
(−P,−P,−p2, {m}21345)

]

,

vH

1226
=

1

2

[

V H

224
l212 + V G

124
(P, P, p2, {m}34256) − V G

124
(−P,−P,−p2, {m}21345)

+ V G

B4
(P, P, p2, {m}34256) − V G

B4
(−P,−P,−p2, {m}21345)

]

,

vH

1227
=

1

2

[

V H

121
(2 p2

1 − l165) − V G

22
(p2, p2,−p1, {m}21634) + V G

A2
(p2, p2,−p1, {m}21634)

− V G

A2
(−p2,−p2, p1, {m}12543) − V G

C2
(p2, p2,−p1, {m}21634)

]

,

vH

1228
=

1

2

[

V H

122
(2 p2

1 − l165) + V G

A1
(p2, p2,−p1, {m}21634) − V G

A1
(−p2,−p2, p1, {m}12543)

+ V G

C1
(p2, p2,−p1, {m}21634) + V G

A2
(p2, p2,−p1, {m}21634) − V G

A2
(−p2,−p2, p1, {m}12543)

− V G

C2
(p2, p2,−p1, {m}21634) − 2 V G

A3
(p2, p2,−p1, {m}21634) + 2 V G

A3
(−p2,−p2, p1, {m}12543)

+ V G

12A
(p2, p2,−p1, {m}21634) − V G

12A
(−p2,−p2, p1, {m}12543)

]

,

vH

1229
=

1

2

[

V H

123
(2 p2

1 − l165) + V G

A2
(p2, p2,−p1, {m}21634) − V G

A2
(−p2,−p2, p1, {m}12543)

− V G

A3
(p2, p2,−p1, {m}21634) + V G

A3
(−p2,−p2, p1, {m}12543) + V G

12A
(p2, p2,−p1, {m}21634)

− V G

12A
(−p2,−p2, p1, {m}12543)

]

,

vH

12210
=

1

2

[

V H

125
(2 p2

1 − l165) + V G

21
(p2, p2,−p1, {m}21634) − V G

22
(p2, p2,−p1, {m}21634)

+ V G

0
(p2, p2,−p1, {m}21634) + V G

C1
(p2, p2,−p1, {m}21634) + V G

A2
(p2, p2,−p1, {m}21634)

− V G

A2
(−p2,−p2, p1, {m}12543) − 2 V G

C2
(p2, p2,−p1, {m}21634) − V G

A3
(p2, p2,−p1, {m}21634)

+ V G

A3
(−p2,−p2, p1, {m}12543)

]

,

vH

12211
=

1

2

[

V H

124
(2 p2

1 − l165) + V G

A4
(p2, p2,−p1, {m}21634) − V G

A4
(−p2,−p2, p1, {m}12543)

]

. (427)

In the following Appendices results for rank three tensors with completely saturated indices are presented.
At the same time we give an explicit solution for the form factors which are needed, implicitly, for some of
the contracted expressions and, explicitly, for testing WST identities. We recall that tensors with saturated
indices are of the upmost importance for applications related to projection techniques (see Section 4).

B.8.3 The V M family

Almost all contracted tensors in this family can be trivially obtained using Eq.(411) and the definitions of
Eqs.(414)–(417). Only for the 111 group we have to solve first for the form factors and then to replace the
resulting expressions into the decomposition of the saturated tensors; in this way we are able to obtain

V M(µ, µ, p1 | 0) = vM

1111
p2
1 + vM

1112
p12, V M(µ, µ, p2 | 0) = vM

1111
p12 + vM

1112
p2
2, (428)
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(n + 2)V M(p1, p1, p2 | 0) = 3 vM

1111
D3 − vM

1112
(2 D − 3 D1) − vM

1113
p2
1 (n − 1)D3

+ vM

1116
p2
2

[

n D − (n − 1)D1

]

− vM

1116
p2
1

[

6 (n − 2)D − (n − 1) (9 D1 − 11 D3)
]

+
[

vM

1116
+ vM

1115

]

p12

[

(n − 2)D − 3 (n − 1)D1

]

+ vM

1114
p2
1

[

2 (n − 2)D − 3 (n − 1) (D1 − D3)
]

,

(n + 2)V M(p2, p2, p1 | 0) = −vM

1111
(2 D − 3 D1) + 3 vM

1112
D2

+ vM

1116
p2
2

[

2 (n − 2)D − (n − 1) (3 D1 + D2)
]

+ 11 vM

1116
p2
1

[

n D − (n − 1)D1

]

− 3 vM

1116
p12

[

(n − 2)D − 3 (n − 1)D1

]

+ vM

1115
p2
2

[

2 (n − 2)D − 3 (n − 1)D1

]

+ 9 vM

1115
p2
1

[

n D − (n − 1)D1

]

− 2 vM

1115
p12

[

(n − 2)D − 3 (n − 1)D1

]

+ vM

1113
p2
1

[

n D − (n − 1)D1

]

− 3 vM

1114
p2
1

[

n D − (n − 1)D1

]

+ vM

1114
p12

[

(n − 2)D − 3 (n − 1)D1

]

,

(n + 2) p2
2 V M(p1, p1, p1 | 0) = 3 vM

1111
p2
1 D1 + 3 vM

1112
p12 D1 − 11 vM

1116
p4
1 D1 (n − 1)

+ vM

1116

[

3 n D D1 + (n + 2)D D2 − (n − 1)D1 (D2 − 9 D3 + 3 D1)
]

− 9 vM

1115
p4
1 D1 (n − 1) + 3 vM

1115
D1

[

n D + (n − 1) (2 D3 − D1)
]

− (n − 1)
[

vM

1113
p4
1 − 3 vM

1114
p4
1 + 3 vM

1114
D3

]

D1

(n + 2) p4
1 V M(p2, p2, p2 | 0) =

[

3 vM

1111
D3 + 3 vM

1112
D1 − vM

1116
p2
2 D1 (n − 1) − 3 vM

1116
p12 D1 (n − 1)

]

D1

− vM

1116
p2
1

[

9 n D D1 − 11 (n + 2)D D3 + (n − 1)D1 (11 D3 − 9 D1)
]

− 3 vM

1115
p2
1

[

2 n D D1 − 3 (n + 2)D D3 + (n − 1)D1 (3 D3 − 2 D1)
]

− 3 vM

1115
p12 D2

1 (n − 1) + vM

1113
p2
1 D3

[

(n + 2)D − (n − 1)D1

]

+ 3 vM

1114
p2
1

[

n D D1 − (n + 2)D D3 + (n − 1)D1 (D3 − D1)
]

. (429)

We still need the explicit form of the form factors which requires generalized scalars of Eq.(418):

















V M

2221

V M

2222

V M

2223

V M

2224

V M

2225

V M

2226

















=

















n + 2 0 2 p12 p2
2 p2

1 0
2 0 p12 0 p2

1 0
0 1 p2

1 p12 0 0
0 0 0 p2

1 0 p12

p2
1 p12 0 0 0 0
0 2 0 p12 0 p2

2

















−1 















vM

2221

vM

2223

vM

2225

vM

2224

vM

2226

vM

2228

































V M

1221

V M

1222

V M

1223

V M

1224

V M

1225

V M

1226

















=

















2 0 p12 0 p2
1 0

0 1 p2
1 p12 0 0

0 0 0 p2
1 0 p12

p2
1 p12 0 0 0 0
0 0 p12 0 p12 0

p12 p2
2 0 0 0 0

















−1 















vM

1223

vM

1225

vM

1224

vM

1226

vM

1227

vM

12210
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V M

1121

V M

1122

V M

1123

V M

1124

V M

1125

V M

1126

V M

1127

V M

1128

























=

























0 2 + n p2
1 2 p12 0 p2

2 0 2
2 0 p12 0 p2

1 0 2 0
0 0 0 p2

1 0 p12 0 0
0 0 p2

2 0 p12 0 0 0
p2
1 p12 0 0 0 0 0 0
1 0 p12 p2

2 0 0 1 0
0 2 0 p12 0 p2

2 0 2
p12 p2

2 0 0 0 0 0 0

























−1 























vM

1122

vM

1123

vM

1124

vM

1127

vM

1126

vM

1129

vM

1128

vM

11210

























For the 111 group we have

(n + 2)V M

1111
= vM

1113
p2
1 + vM

1114
(−3 p2

1 + 2 p12) + vM

1115
(9 p2

1 − 4 p12 + p2
2)

+ vM

1116
(11 p2

1 − 6 p12 + p2
2) + vM

1111
,

(n + 2)V M

1112
= vM

1114
p2
1 + 2 vM

1115
(−p2

1 + p12) + vM

1116
(−3 p2

1 + 2 p12 + p2
2) + vM

1112
, (430)

V M

1113
= −vM

1114
+ 2 vM

1115
+ 3 vM

1116
, V M

1114
= −vM

1115
− vM

1116
,

V M

1115
= −vM

1113
+ 3 vM

1114
− 9 vM

1115
− 11 vM

1116
, V M

1116
= −vM

1116
. (431)

B.8.4 The V K family

Most of the fully saturated rank three tensors in this family can be trivially obtained from the partial
contractions of Eq.(412) and evaluated with the help of Eqs.(419)–(422). Some of them, however, correspond
to contractions leading to irreducible scalar products and, therefore, they require an explicit solution for the
form factors. The latter are given in the following list where we use shorthand notation, Pi = pi · P :

P 2 P2 V K(p1, p1, p2 | 0) = vK

1111
p12

[

D (P 2 + p12) + p12 (P 2 p12 + P 2
1 )

]

+ vK

1112

[

D (P 2
2 + p2

12) + p2
12 (P 2 p12 + P 2

2 )
]

− vK

1114
D P2 p2

2 + vK

1115
D (P1 p12 + D)

− vK

1116

[

(n − 1) (D P2 + P 2 p2
12) + D p12

]

+ V K

1111
D2 (n − 2),

P 2 P2 V K(p2, p2, p1 | 0) = vK

1111
p2
12 (D + P 2 p12 + P 2

2 ) + vK

1112
P2

[

D (p12 − P2) + P 2
2 p12

]

− V K

1111
D2 (n − 2),

− vK

1114
D P2 (p12 − P2) + vK

1115
D P2 (p12 + P2) + vK

1116

[

(n − 1)P2 (D − P2 p12) − D (n − 2) p12

]

,

P 2 P2 V K(p1, p1, p1 | 0) = vK

1111
(D + P1 p12) (p2

1 + D) − V K

1111
D2 (n − 2)

+ vK

1112

[

D (D + 2 P 2 p12 + p2
12) + p2

12 (P 2 p12 + P 2
1 )

]

− vK

1114
D (2 P2 p12 + P1 p12 + D)

− vK

1115
D (P1 p12 + D) − vK

1116

[

(n − 1) (D P1 − P 2
1 p12) + D (n − 2) p12

]

,

P 2 P2 p2
1 V K(p2, p2, p2 | 0) = vK

1111
p3
12 (D + P 2 p12 + P 2

2 ) + vK

1112
P2

[

p2
12 (D + P 2

2 ) + D (D − P2 p12)
]

− vK

1114
D P2 (p2

12 − P 2
2 ) + vK

1115
D P2 (p2

12 + 2 P2 p12 − D)

+ vK

1116

[

D n P2 p12 − (n − 2)D (p2
12 + D) + D P 2

2 − (n − 1)P 2
2 p2

12

]

+ V K

1111
D2 (n − 2) p2

1. (432)

For some special purpose, one may need to have direct access to the explicit expressions of the form factors,
or of the uncontracted tensors, which is the same. Here is their solution:

(

V K

2221

V K

2222

)

= G−1

(

vK

2226

vK

22210

)

,









V K

2223

V K

2224

V K

2225

V K

2226









=









2 p12 p2
2 p2

1 0
p12 0 p2

1 0
p2
1 p12 0 0
0 p2

1 0 p12









−1 







vK

2221
− (n + 2)V K

2221

vK

2223
− 2 V K

2221

vK

2225
− V K

2222

vK

2224
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V K

1111
= −ω4

[

V
1,1|1,1,3|2

K + V
1,1|1,2,2|2

K + V
1,1|1,3,1|2

K +
1

2
V

1,1|2,1,2|2
K +

1

2
V

1,1|2,2,1|2
K

+V
1,1|1,1,2|3

K + V
1,1|1,2,1|3

K + V
1,2|1,1,3|1

K + V
1,2|1,2,2|1

K + V
1,2|1,3,1|1

K + V
1,2|2,1,2|1

K

+V
1,2|2,2,1|1

K + V
1,2|3,1,1|1

K + V
1,2|1,1,2|2

K + V
1,2|1,2,1|2

K + V
1,2|2,1,1|2

K + V
1,2|1,1,1|3

K

]

,

V K

1112
=

1

p2P

[

p1 · P V K

1111
+ vK

1116

]









V K

1113

V K

1114

V K

1115

V K

1116









=









2 p12 p2
2 p2

1 0
p2
1 2 p12 0 p2

2

p1 · P p2 · P 0 0
0 p1 · P 0 p2 · P









−1 







vK

1111
− (n + 2)V K

1111

vK

1113
− (n + 2)V K

1112

vK

1115
− V K

1111

vK

1114
− 2 V K

1112









Note that for the 111 group one form factor must be written in terms of generalized functions. This is
a typical aspect of the procedure where, sometimes, the equations that one obtains are not all linearly
independent.

(

V K

1123

V K

1124

)

= G−1

(

vK

1127

vK

11215

)

, (433)

























V K

1121

V K

1122

V K

1125

V K

1126

V K

1127

V K

1128

V K

1129

V K

11210

























=

























2 0 p2
1 0 2 p12 0 0 p2

2

1 0 0 0 0 p1 · P p1 · P 0
0 1 0 0 p1 · P 0 0 p2 · P

p1 · P p2 · P 0 0 0 0 0 0
2 0 p2

1 0 0 0 p12 0
0 0 0 p12 0 0 0 p2

1

1 0 0 0 p2
1 p12 0 0

0 0 p12 0 0 0 p2
2 0

























−1 























vK

1121
− n V K

1123

vK

11210
− V K

1124

vK

11211
− V K

1123

vK

1123

vK

1124

vK

1125

vK

1126

vK

11212

























(

V K

1221

V K

1222

)

= G−1

(

vK

1227

vK

12216

)

,

























V K

1223

V K

1224

V K

1225

V K

1226

V K

1227

V K

1228

V K

1229

V K

12210

























=

























n 0 p2
1 0 2 p12 0 0 p2

2

0 n 0 p2
2 0 2 p12 p2

1 0
1 0 p2

1 0 p12 0 0 0
0 0 0 0 p2

1 0 0 p12

0 0 0 p12 0 p2
1 0 0

0 0 p12 0 p2
2 0 0 0

0 0 0 0 0 p2
2 p12 0

0 1 0 p2
2 0 p12 0 0

























−1 























vK

1221
− 2 V K

1221

vK

1222
− 2 V K

1222

vK

1223
− V K

1221

vK

1225
− V K

1222

vK

1224

vK

12212

vK

12215
− V K

1221

vK

12213
− V K

1222

























B.8.5 The V H family

We obtain tensors with saturated indices in the 111 and 222 groups from the corresponding results in the
V M family by replacing vM

111i
and vM

222i
with vH

111i
and vH

222i
. Once again there are saturated tensors leading

to contractions with irreducible scalar products that require an explicit solution for the form factors. The
latter are given in the following list:

p12 p2
1 V H(µ |µ, p2) = vH

1222
D p12 − vH

1228
D p2

2 (n − 1)

− vH

1226
n D p12 − vH

12210
(n − 1) (D − p2

12) + vH

1223
D3 p2

1

+ vH

1224
p12

[

(n − 1)D + p2
12

]

+ vH

1225

[

(n − 1)D p2
1 + 2 D3 p12

]

+ vH

1226
D3,

p12 p2
1 V H(p2 | p2, p2) = vH

1223
D3 p12 + vH

1224
(D p2

2 + D2 p12) + 2 vH

1225
p12 D1 + vH

1226
D1,

V H(p2 | p2, p1) = vH

1223
D3 + vH

1224
D2 + vH

1225
(D + 2 p2

12) + vH

1226
p12,
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V H(p2 | p1, p1) = vH

1223
p4
1 + vH

1224
p2
12 + 2 vH

1225
D3 + vH

1226
p2
1,

p2
2 V H(µ, p1 |µ) = vH

1121
D + vH

11211
D3 + vH

1123
D2

+ vH

1124

[

D (n − 1) + p2
12

]

− vH

1125

[

D (n − 1) − p2
12

]

+ vH

1126
p2
12,

V H(µ, p2 |µ) = vH

11211
p2
1 + vH

1123
p2
2 + vH

1124
p12 + vH

1125
p12 + vH

1126
n,

V H(p2, p2 | p1) = vH

11211
D3 + vH

1123
D2 + vH

1124
p2
12 + vH

1125
D1 + vH

1126
p12. (434)

The form factors are obtained as follows:

V H

2221
=

1

p2
1

[

vH

2225
− p12 V H

2222

]

,









V H

2223

V H

2224

V H

2225

V H

2226









=









2 p12 p2
2 p2

1 0
p12 0 p2

1 0
p2
1 p12 0 0
0 p2

1 0 p12









−1 







vH

2221
− (n + 2)V H

2221

vH

2223
− 2 V H

2221

vH

2225
− V H

2222

vH

2224









V H

2222
= ω4

[1

2
V

1,2|1,1|2,2
H + V

1,2|1,1|3,1
H + V

1,3|1,1|2,1
H − V

2,1|1,1|1,3
H −

1

2
V

2,1|1,1|2,2
H −

1

2
V

2,2|1,1|1,2
H

+
1

2
V

2,2|1,1|2,1
H − V

3,1|1,1|1,2
H

]

,

V H

1112
=

1

p2
2

[

vH

1116
− p12 V H

1111

]

,









V H

1113

V H

1114

V H

1115

V H

1116









=









p2
1 2 p12 0 p2

2

p2
2 0 p12 0

p12 p2
2 0 0

0 p12 0 p2
2









−1 







vH

1112
− (n + 2)V H

1112

vH

1113

vH

1115
− V H

1111

vH

1114
− 2 V H

1112









V H

1111
= ω4

[

V
1,1|1,3|1,2

H +
1

2
V

1,1|2,2|1,2
H + V

1,1|1,2|1,3
H −

1

2
V

1,1|2,2|2,1
H − V

1,1|3,1|2,1
H +

1

2
V

1,1|1,2|2,2
H

−
1

2
V

1,1|2,1|2,2
H − V

1,1|2,1|3,1
H

]

,

























V H

1121

V H

1122

V H

1123

V H

1124

V H

1125

V H

1126

V H

1127

V H

1128

























=

























2 0 n 0 p2
1 0 2 p12 p2

2

2 0 0 0 p2
1 0 p12 0

0 1 0 0 0 0 p2
1 p12

0 0 0 0 0 p12 0 p2
1

0 0 p2
1 p12 0 0 0 0

0 0 0 0 p12 0 p2
2 0

0 0 1 0 0 0 p12 p2
2

p12 p2
2 0 0 0 0 0 0

























−1 























vH

1121

vH

1123

vH

1125

vH

1124

vH

1126

vH

1127

vH

11210

vH

11211

















































V H

1221

V H

1222

V H

1223

V H

1224

V H

1225

V H

1226

V H

1227

V H

1228

























=

























0 2 0 n 0 p2
2 p2

1 2 p12

1 0 1 0 p2
1 0 p12 0

0 1 0 0 0 0 p2
1 p12

0 0 0 1 0 0 p2
1 p12

0 0 0 0 0 p12 0 p2
1

p2
1 p12 0 0 0 0 0 0
0 0 0 0 p12 0 p2

2 0
0 0 p12 p2

2 0 0 0 0

























−1 























vH

1222

vH

12211

vH

1224

vH

1223

vH

1226

vH

1227

vH

1229

vH

12210

























C Symmetry properties

Before discussing the symmetry properties of two-loop functions we briefly describe our strategy to
generate Feynman diagrams. We use the GraphShot code [34], written in FORM [35], which uses the same
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logic introduced in [36] and has also been applied to one-loop diagrams in [37]. Well-known packages for
diagram handling are listed in [38].

The basic algorithm is inspired by an efficient way of accounting for combinatorial factors in diagrams
and uses the results of [39].

GraphShot has a table of all the vertices occurring in the Standard Model, which involves the parti-
cles γ, · · · f, · · ·. Starting from the class of diagrams one wants to evaluate, GraphShot generates all the
graphs by inserting every possible combination of propagators γγ, ff, ff, · · · in the topology, discarding
those containing non existing vertices. Combinatorial factors are included for each graph corresponding to
the situation where all propagators are scalar and identical. An example is given in Fig. 18. After their

SE

QED
= C131

[

+
]

= +

Figure 18: The QED SE graph as generated by GraphShot [34]. The combinatoric factor C131 corresponds to the
scalar SE graph with identical lines and is equal to 1/2.

generation, the diagrams are ready for evaluation or for a check of the corresponding WST identities of the
theory. For the latter case we always produce a full scalarization of the result and look for symmetries among
the various terms in the result. A typical intermediate output of GraphShot is given in Eq.(301).

Let us give an example of the symmetries: for the SA family we have the inverse propagators [1] =
q2
1 + m2

1, [2]A = (q1 − q2 + p)2 + m2
2, and [3]A = q2

2 + m2
3. Consider a set of transformations (where ⊕ stands

for ‘followed by’):

a) : q1 → q1 + q2 − p ⊕ q2 → −q2,

b) : q1 ↔ q2,

c) : q2 → −q2 + q1 + p; (435)

they correspond to symmetries specified by

a) → SA

0
(p, {m}123) = SA

0
(−p, {m}213),

SA

1
(p, {m}123) = −SA

1
(−p, {m}213) + SA

2
(−p, {m}213) − SA

0
(−p, {m}213),

SA

2
(p, {m}123) = SA

2
(−p, {m}213),

b) → SA

0
(p, {m}123) = SA

0
(−p, {m}321),

SA

1
(p, {m}123) = −SA

2
(−p, {m}321),

c) → SA

0
(p, {m}123) = SA

0
(p, {m}132),

SA

1
(p, {m}123) = SA

1
(p, {m}132),

SA

2
(p, {m}123) = −SA

2
(p, {m}132) + SA

1
(p, {m}132) + SA

0
(p, {m}132). (436)

For the other two-point functions we recall the conventions: each propagator will be denoted by [i] = k2
i +m2

1

and
C, k1 = q1, k2 = q1 − q2, k3 = q2, k4 = q2 + p,
D, k1 = q1, k2 = q1 + p, k3 = q1 − q2, k4 = q2, k5 = q2 + p,
E, k1 = q1, k2 = q1 − q2, k3 = q2, k4 = q2 + p, k5 = q2.
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We simply indicate the symmetry property of the scalar configurations; for instance, a change of variables
q1 → q1 + q2 followed by q2 → −q2 corresponds to a symmetry of the SC family with respect to the exchange
p → −p and m1 ↔ m2:

SC : q1 → q1 + q2 ⊕ q2 → −q2, ⇒ p → −p, m1 ↔ m2,

SE : m3 ↔ m5,

q1 → q1 + q2 ⊕ q2 → −q2, ⇒ p → −p, m1 ↔ m2,

SD : q1 ↔ q2, ⇒ m1 ↔ m4, m2 ↔ m5,

q1 → q1 − p , q2 → q2 − p, ⇒ m1 ↔ m2, m4 ↔ m5. (437)

Finally, let us consider the symmetries of the three-point functions; for the general class V 1N1 we obtain

V 1N1 : q1 → q1 + q2 ⊕ q2 → −q2, ⇒ pi → −pi, m1 ↔ m2,

V M : m3 ↔ m6,

m4 ↔ m5 , p1 ↔ P , p2 → −p2. (438)

For symmetries in the V G, V K and V H families we have

V G : q1 ↔ q2, ⇒ m2 ↔ m4, m1 ↔ m5, p1 ↔ −p2.

V K : qi → qi − P, ⇒ m1 ↔ m2, m4 ↔ m6, p1 ↔ −p2.

V H : q1 ↔ q2, ⇒ m1 ↔ m5, m2 ↔ m6, m3 ↔ m4, p1 ↔ p2. (439)

All symmetry properties refer to the scalar configurations.
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